| Intuitionistic Logic Explorer Theorem List (p. 161 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||||||||
| Theorem | umgr2edg1 16001* | If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 8-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgr2edg1 16002* | If a vertex is adjacent to two different vertices in a simple graph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 17-Oct-2020.) (Proof shortened by AV, 8-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | umgrvad2edg 16003* | If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg 16000. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | umgr2edgneu 16004* | If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgr2edg1 16002. Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgrsizedgen 16005 | In a simple graph, the size of the edge function is the number of the edges of the graph. (Contributed by AV, 4-Jan-2020.) (Revised by AV, 7-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝐺 ∈ USGraph → (iEdg‘𝐺) ≈ (Edg‘𝐺)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredg3 16006* | The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ (𝐸‘𝑋) = {𝑥, 𝑦})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredg4 16007* | For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredgreu 16008* | For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃!𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredg2vtx 16009* | For a vertex incident to an edge there is another vertex incident to the edge in a simple graph. (Contributed by AV, 18-Oct-2020.) (Proof shortened by AV, 5-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uspgredg2vtxeu 16010* | For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 6-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐺 ∈ USPGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredg2vtxeu 16011* | For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple graph. (Contributed by AV, 18-Oct-2020.) (Proof shortened by AV, 6-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uspgredg2vlem 16012* | Lemma for uspgredg2v 16013. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐴 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uspgredg2v 16013* | In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐴 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} & ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧})) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1→𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredg2vlem1 16014* | Lemma 1 for usgredg2v 16016. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredg2vlem2 16015* | Lemma 2 for usgredg2v 16016. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴) → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredg2v 16016* | In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} & ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁})) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1→𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgriedgdomord 16017* | Alternate version of usgredgdomord 16022, not using the notation (Edg‘𝐺). In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ≼ 𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ushgredgedg 16018* | In a simple hypergraph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 11-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} & ⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) ⇒ ⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredgedg 16019* | In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 18-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} & ⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ushgredgedgloop 16020* | In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex 𝑁 and the set of loops at this vertex 𝑁. (Contributed by AV, 11-Dec-2020.) (Revised by AV, 6-Jul-2022.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} & ⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑁}} & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) ⇒ ⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) | ||||||||||||||||||||||||||||||||||||||
| Theorem | uspgredgdomord 16021* | In a simple pseudograph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ≼ 𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgredgdomord 16022* | In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) (Proof shortened by AV, 6-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ≼ 𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | usgrstrrepeen 16023* | Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (𝜑 → 𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑 → 𝐺 ∈ V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) ⇒ ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ USGraph) | ||||||||||||||||||||||||||||||||||||||
| Syntax | cwlks 16024 | Extend class notation with walks (i.e. 1-walks) (of a hypergraph). | ||||||||||||||||||||||||||||||||||||
| class Walks | ||||||||||||||||||||||||||||||||||||||
| Definition | df-wlks 16025* |
Define the set of all walks (in a hypergraph). Such walks correspond to
the s-walks "on the vertex level" (with s = 1), and also to
1-walks "on
the edge level" discussed in Aksoy et al. The predicate
𝐹(Walks‘𝐺)𝑃 can be read as "The pair 〈𝐹, 𝑃〉
represents a walk in a graph 𝐺", see also iswlk 16029.
The condition {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)) (hereinafter referred to as C) would not be sufficient, because the repetition of a vertex in a walk (i.e. (𝑝‘𝑘) = (𝑝‘(𝑘 + 1)) should be allowed only if there is a loop at (𝑝‘𝑘). Otherwise, C would be fulfilled by each edge containing (𝑝‘𝑘). According to the definition of [Bollobas] p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wkslem1 16026 | Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 = 𝐵 → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵))))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wkslem2 16027 | Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘𝐶), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘𝐶)} ⊆ (𝐼‘(𝐹‘𝐵))))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wksfval 16028* | The set of walks (in an undirected graph). (Contributed by AV, 30-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (Walks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | iswlk 16029* | Properties of a pair of functions to be/represent a walk. (Contributed by AV, 30-Dec-2020.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlkpropg 16030* | Properties of a walk. (Contributed by AV, 5-Nov-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlkvg 16031 | The classes involved in a walk are sets. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 3-Feb-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | iswlkg 16032* | Generalization of iswlk 16029: Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlkfg 16033 | The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → 𝐹 ∈ Word dom 𝐼) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlkclg 16034 | A walk has length ♯(𝐹), which is an integer. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → (♯‘𝐹) ∈ ℕ0) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlkpg 16035 | The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → 𝑃:(0...(♯‘𝐹))⟶𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlkpwrdg 16036 | The sequence of vertices of a walk is a word over the set of vertices. (Contributed by AV, 27-Jan-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → 𝑃 ∈ Word 𝑉) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlklenvp1g 16037 | The number of vertices of a walk (in an undirected graph) is the number of its edges plus 1. (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 1-May-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → (♯‘𝑃) = ((♯‘𝐹) + 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlkm 16038* | The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018.) (Revised by AV, 2-Jan-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → ∃𝑥 𝑥 ∈ 𝑃) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlklenvm1g 16039 | The number of edges of a walk is the number of its vertices minus 1. (Contributed by Alexander van der Vekens, 1-Jul-2018.) (Revised by AV, 2-Jan-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → (♯‘𝐹) = ((♯‘𝑃) − 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ifpsnprss 16040 | Lemma for wlkvtxeledgg 16041: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlkvtxeledgg 16041* | Each pair of adjacent vertices in a walk is a subset of an edge. (Contributed by AV, 28-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | wlkvtxiedgg 16042* | The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) | ||||||||||||||||||||||||||||||||||||||
This section describes the conventions we use. These conventions often refer to existing mathematical practices, which are discussed in more detail in other references. The following sources lay out how mathematics is developed without the law of the excluded middle. Of course, there are a greater number of sources which assume excluded middle and most of what is in them applies here too (especially in a treatment such as ours which is built on first-order logic and set theory, rather than, say, type theory). Studying how a topic is treated in the Metamath Proof Explorer and the references therein is often a good place to start (and is easy to compare with the Intuitionistic Logic Explorer). The textbooks provide a motivation for what we are doing, whereas Metamath lets you see in detail all hidden and implicit steps. Most standard theorems are accompanied by citations. Some closely followed texts include the following:
| ||||||||||||||||||||||||||||||||||||||
| Theorem | conventions 16043 |
Unless there is a reason to diverge, we follow the conventions of the
Metamath Proof Explorer (MPE, set.mm). This list of conventions is
intended to be read in conjunction with the corresponding conventions in
the Metamath Proof Explorer, and only the differences are described
below.
Label naming conventions Here are a few of the label naming conventions:
The following table shows some commonly-used abbreviations in labels which are not found in the Metamath Proof Explorer, in alphabetical order. For each abbreviation we provide a mnenomic to help you remember it, the source theorem/assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. For the "g" abbreviation, this is related to the set.mm usage, in which "is a set" conditions are converted from hypotheses to antecedents, but is also used where "is a set" conditions are added relative to similar set.mm theorems.
(Contributed by Jim Kingdon, 24-Feb-2020.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-or 16044 | Example for ax-io 714. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 = 3 ∨ 4 = 4) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-an 16045 | Example for ax-ia1 106. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 = 2 ∧ 3 = 3) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 1kp2ke3k 16046 |
Example for df-dec 9575, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 9575 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (;;;1000 + ;;;2000) = ;;;3000 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-fl 16047 | Example for df-fl 10485. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-ceil 16048 | Example for df-ceil 10486. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-exp 16049 | Example for df-exp 10756. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-fac 16050 | Example for df-fac 10943. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (!‘5) = ;;120 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-bc 16051 | Example for df-bc 10965. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (5C3) = ;10 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-dvds 16052 | Example for df-dvds 12294: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 3 ∥ 6 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-gcd 16053 | Example for df-gcd 12470. (Contributed by AV, 5-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (-6 gcd 9) = 3 | ||||||||||||||||||||||||||||||||||||||
| Theorem | mathbox 16054 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm. Guidelines: Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details. (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnsn 16055 | As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ¬ 𝜓) ↔ (¬ ¬ 𝜑 → ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnor 16056 | Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnim 16057 | The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnan 16058 | The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnclavius 16059 | Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((¬ 𝜑 → 𝜑) → ¬ ¬ 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-imnimnn 16060 | If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 16059 as its last step. (Contributed by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (¬ 𝜑 → 𝜓) ⇒ ⊢ ¬ ¬ 𝜓 | ||||||||||||||||||||||||||||||||||||||
Some of the following theorems, like bj-sttru 16062 or bj-stfal 16064 could be deduced from their analogues for decidability, but stability is not provable from decidability in minimal calculus, so direct proofs have their interest. | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-trst 16061 | A provable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sttru 16062 | The true truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ STAB ⊤ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-fast 16063 | A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ 𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stfal 16064 | The false truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ STAB ⊥ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnst 16065 | Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 16311 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in ( → , ¬ ) -intuitionistic calculus with definitions (uses of ax-ia1 106, ax-ia2 107, ax-ia3 108 are via sylibr 134, necessary for definition unpackaging), and in ( → , ↔ , ¬ )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ¬ ¬ STAB 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnbist 16066 | If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if 𝜑 is a classical tautology, then ¬ ¬ 𝜑 is an intuitionistic tautology. Therefore, if 𝜑 is a classical tautology, then 𝜑 is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 16079). (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → (STAB 𝜑 ↔ 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stst 16067 | Stability of a proposition is stable if and only if that proposition is stable. STAB is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB STAB 𝜑 ↔ STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stim 16068 | A conjunction with a stable consequent is stable. See stabnot 838 for negation , bj-stan 16069 for conjunction , and bj-stal 16071 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜓 → STAB (𝜑 → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stan 16069 | The conjunction of two stable formulas is stable. See bj-stim 16068 for implication, stabnot 838 for negation, and bj-stal 16071 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((STAB 𝜑 ∧ STAB 𝜓) → STAB (𝜑 ∧ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stand 16070 | The conjunction of two stable formulas is stable. Deduction form of bj-stan 16069. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 16069 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → STAB 𝜓) & ⊢ (𝜑 → STAB 𝜒) ⇒ ⊢ (𝜑 → STAB (𝜓 ∧ 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stal 16071 | The universal quantification of a stable formula is stable. See bj-stim 16068 for implication, stabnot 838 for negation, and bj-stan 16069 for conjunction. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥STAB 𝜑 → STAB ∀𝑥𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-pm2.18st 16072 | Clavius law for stable formulas. See pm2.18dc 860. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜑) → 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-con1st 16073 | Contraposition when the antecedent is a negated stable proposition. See con1dc 861. (Contributed by BJ, 11-Nov-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-trdc 16074 | A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dctru 16075 | The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ DECID ⊤ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-fadc 16076 | A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ 𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcfal 16077 | The false truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ DECID ⊥ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcstab 16078 | A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (DECID 𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnbidc 16079 | If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 16066. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → (DECID 𝜑 ↔ 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nndcALT 16080 | Alternate proof of nndc 856. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ¬ ¬ DECID 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcdc 16081 | Decidability of a proposition is decidable if and only if that proposition is decidable. DECID is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (DECID DECID 𝜑 ↔ DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stdc 16082 | Decidability of a proposition is stable if and only if that proposition is decidable. In particular, the assumption that every formula is stable implies that every formula is decidable, hence classical logic. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB DECID 𝜑 ↔ DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dcst 16083 | Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (DECID STAB 𝜑 ↔ STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-ex 16084* | Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1644 and 19.9ht 1687 or 19.23ht 1543). (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∃𝑥𝜑 → 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-hbalt 16085 | Closed form of hbal 1523 (copied from set.mm). (Contributed by BJ, 2-May-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nfalt 16086 | Closed form of nfal 1622 (copied from set.mm). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | spimd 16087 | Deduction form of spim 1784. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2spim 16088* | Double substitution, as in spim 1784. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑧𝜒 & ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑧∀𝑥𝜓 → 𝜒) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ch2var 16089* | Implicit substitution of 𝑦 for 𝑥 and 𝑡 for 𝑧 into a theorem. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑧𝜓 & ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ch2varv 16090* | Version of ch2var 16089 with nonfreeness hypotheses replaced with disjoint variable conditions. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-exlimmp 16091 | Lemma for bj-vtoclgf 16098. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜒 → 𝜑) ⇒ ⊢ (∀𝑥(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜒 → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-exlimmpi 16092 | Lemma for bj-vtoclgf 16098. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜒 → 𝜑) & ⊢ (𝜒 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥𝜒 → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sbimedh 16093 | A strengthening of sbiedh 1833 (same proof). (Contributed by BJ, 16-Dec-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sbimeh 16094 | A strengthening of sbieh 1836 (same proof). (Contributed by BJ, 16-Dec-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sbime 16095 | A strengthening of sbie 1837 (same proof). (Contributed by BJ, 16-Dec-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-el2oss1o 16096 | Shorter proof of el2oss1o 6587 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) | ||||||||||||||||||||||||||||||||||||||
Various utility theorems using FOL and extensionality. | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-vtoclgft 16097 | Weakening two hypotheses of vtoclgf 2859. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝑉 → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-vtoclgf 16098 | Weakening two hypotheses of vtoclgf 2859. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → 𝜑) & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elabgf0 16099 | Lemma for elabgf 2945. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | elabgft1 16100 | One implication of elabgf 2945, in closed form. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |