ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wlkeq GIF version

Theorem wlkeq 16065
Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
wlkeq ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem wlkeq
StepHypRef Expression
1 eqid 2229 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2229 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
3 eqid 2229 . . . . . . 7 (1st𝐴) = (1st𝐴)
4 eqid 2229 . . . . . . 7 (2nd𝐴) = (2nd𝐴)
51, 2, 3, 4wlkelwrd 16064 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)))
6 eqid 2229 . . . . . . 7 (1st𝐵) = (1st𝐵)
7 eqid 2229 . . . . . . 7 (2nd𝐵) = (2nd𝐵)
81, 2, 6, 7wlkelwrd 16064 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)))
95, 8anim12i 338 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))))
10 wlkmex 16032 . . . . . . 7 (𝐴 ∈ (Walks‘𝐺) → 𝐺 ∈ V)
11 wlkcprim 16061 . . . . . . 7 (𝐴 ∈ (Walks‘𝐺) → (1st𝐴)(Walks‘𝐺)(2nd𝐴))
12 wlklenvm1g 16053 . . . . . . 7 ((𝐺 ∈ V ∧ (1st𝐴)(Walks‘𝐺)(2nd𝐴)) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
1310, 11, 12syl2anc 411 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
14 wlkmex 16032 . . . . . . 7 (𝐵 ∈ (Walks‘𝐺) → 𝐺 ∈ V)
15 wlkcprim 16061 . . . . . . 7 (𝐵 ∈ (Walks‘𝐺) → (1st𝐵)(Walks‘𝐺)(2nd𝐵))
16 wlklenvm1g 16053 . . . . . . 7 ((𝐺 ∈ V ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
1714, 15, 16syl2anc 411 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
1813, 17anim12i 338 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1)))
19 eqwrd 11112 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐵) ∈ Word dom (iEdg‘𝐺)) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
2019ad2ant2r 509 . . . . . . 7 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
2120adantr 276 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
22 lencl 11075 . . . . . . . . 9 ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (♯‘(1st𝐴)) ∈ ℕ0)
2322adantr 276 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (♯‘(1st𝐴)) ∈ ℕ0)
24 simpr 110 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺))
25 simpr 110 . . . . . . . 8 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))
26 2ffzeq 10337 . . . . . . . 8 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
2723, 24, 25, 26syl2an3an 1332 . . . . . . 7 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
2827adantr 276 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
2921, 28anbi12d 473 . . . . 5 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
309, 18, 29syl2anc 411 . . . 4 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
31303adant3 1041 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
32 eqeq1 2236 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) ↔ (♯‘(1st𝐴)) = (♯‘(1st𝐵))))
33 oveq2 6009 . . . . . . . 8 (𝑁 = (♯‘(1st𝐴)) → (0..^𝑁) = (0..^(♯‘(1st𝐴))))
3433raleqdv 2734 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)))
3532, 34anbi12d 473 . . . . . 6 (𝑁 = (♯‘(1st𝐴)) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
36 oveq2 6009 . . . . . . . 8 (𝑁 = (♯‘(1st𝐴)) → (0...𝑁) = (0...(♯‘(1st𝐴))))
3736raleqdv 2734 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
3832, 37anbi12d 473 . . . . . 6 (𝑁 = (♯‘(1st𝐴)) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3935, 38anbi12d 473 . . . . 5 (𝑁 = (♯‘(1st𝐴)) → (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
4039bibi2d 232 . . . 4 (𝑁 = (♯‘(1st𝐴)) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
41403ad2ant3 1044 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
4231, 41mpbird 167 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
43 wlkelvv 16060 . . . 4 (𝐴 ∈ (Walks‘𝐺) → 𝐴 ∈ (V × V))
44 wlkelvv 16060 . . . 4 (𝐵 ∈ (Walks‘𝐺) → 𝐵 ∈ (V × V))
45 xpopth 6322 . . . 4 ((𝐴 ∈ (V × V) ∧ 𝐵 ∈ (V × V)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
4643, 44, 45syl2an 289 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
47463adant3 1041 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
48 3anass 1006 . . . 4 ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
49 anandi 592 . . . 4 ((𝑁 = (♯‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
5048, 49bitr2i 185 . . 3 (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
5150a1i 9 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
5242, 47, 513bitr3d 218 1 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799   class class class wbr 4083   × cxp 4717  dom cdm 4719  wf 5314  cfv 5318  (class class class)co 6001  1st c1st 6284  2nd c2nd 6285  0cc0 7999  1c1 8000  cmin 8317  0cn0 9369  ...cfz 10204  ..^cfzo 10338  chash 10997  Word cword 11071  Vtxcvtx 15813  iEdgciedg 15814  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-map 6797  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-wlks 16031
This theorem is referenced by:  uspgr2wlkeq  16076
  Copyright terms: Public domain W3C validator