ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsn GIF version

Theorem xpsn 5810
Description: The cross product of two singletons. (Contributed by NM, 4-Nov-2006.)
Hypotheses
Ref Expression
xpsn.1 𝐴 ∈ V
xpsn.2 𝐵 ∈ V
Assertion
Ref Expression
xpsn ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}

Proof of Theorem xpsn
StepHypRef Expression
1 xpsn.1 . 2 𝐴 ∈ V
2 xpsn.2 . 2 𝐵 ∈ V
3 xpsng 5809 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
41, 2, 3mp2an 426 1 ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cop 3669   × cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324
This theorem is referenced by:  dfmpt  5811  ixpsnf1o  6881  txdis  14945
  Copyright terms: Public domain W3C validator