![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpsn | GIF version |
Description: The cross product of two singletons. (Contributed by NM, 4-Nov-2006.) |
Ref | Expression |
---|---|
xpsn.1 | ⊢ 𝐴 ∈ V |
xpsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpsn | ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpsng 5704 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 Vcvv 2749 {csn 3604 〈cop 3607 × cxp 4636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 |
This theorem is referenced by: dfmpt 5706 ixpsnf1o 6750 txdis 14130 |
Copyright terms: Public domain | W3C validator |