ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsng GIF version

Theorem xpsng 5737
Description: The cross product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
xpsng ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})

Proof of Theorem xpsng
StepHypRef Expression
1 fconstg 5454 . . 3 (𝐵𝑊 → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
21adantl 277 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
3 fsng 5735 . 2 ((𝐴𝑉𝐵𝑊) → (({𝐴} × {𝐵}):{𝐴}⟶{𝐵} ↔ ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}))
42, 3mpbid 147 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {csn 3622  cop 3625   × cxp 4661  wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  xpsn  5738  dfmptg  5741  fmptsn  5751  mapsnconst  6753  intopsn  13010  grp1inv  13239  ixpsnbasval  14022
  Copyright terms: Public domain W3C validator