MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup Structured version   Visualization version   GIF version

Theorem volsup 25484
Description: The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
volsup ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
Distinct variable group:   𝑛,𝐹

Proof of Theorem volsup
Dummy variables 𝑗 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7014 . . . . . . . . . . 11 ((𝐹:ℕ⟶dom vol ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ dom vol)
21ad2ant2r 747 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ dom vol)
3 fzofi 13881 . . . . . . . . . . 11 (1..^𝑘) ∈ Fin
4 simpll 766 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol)
5 elfzouz 13563 . . . . . . . . . . . . . 14 (𝑚 ∈ (1..^𝑘) → 𝑚 ∈ (ℤ‘1))
6 nnuz 12775 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
75, 6eleqtrrdi 2842 . . . . . . . . . . . . 13 (𝑚 ∈ (1..^𝑘) → 𝑚 ∈ ℕ)
8 ffvelcdm 7014 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) ∈ dom vol)
94, 7, 8syl2an 596 . . . . . . . . . . . 12 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) ∧ 𝑚 ∈ (1..^𝑘)) → (𝐹𝑚) ∈ dom vol)
109ralrimiva 3124 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ∀𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
11 finiunmbl 25472 . . . . . . . . . . 11 (((1..^𝑘) ∈ Fin ∧ ∀𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
123, 10, 11sylancr 587 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
13 difmbl 25471 . . . . . . . . . 10 (((𝐹𝑘) ∈ dom vol ∧ 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol)
142, 12, 13syl2anc 584 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol)
15 mblvol 25458 . . . . . . . . . . 11 (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
1614, 15syl 17 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
17 difssd 4084 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ⊆ (𝐹𝑘))
18 mblss 25459 . . . . . . . . . . . 12 ((𝐹𝑘) ∈ dom vol → (𝐹𝑘) ⊆ ℝ)
192, 18syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ℝ)
20 mblvol 25458 . . . . . . . . . . . . 13 ((𝐹𝑘) ∈ dom vol → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
212, 20syl 17 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
22 simprr 772 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) ∈ ℝ)
2321, 22eqeltrrd 2832 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ∈ ℝ)
24 ovolsscl 25414 . . . . . . . . . . 11 ((((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ⊆ (𝐹𝑘) ∧ (𝐹𝑘) ⊆ ℝ ∧ (vol*‘(𝐹𝑘)) ∈ ℝ) → (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2517, 19, 23, 24syl3anc 1373 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2616, 25eqeltrd 2831 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2714, 26jca 511 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ))
2827expr 456 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ 𝑘 ∈ ℕ) → ((vol‘(𝐹𝑘)) ∈ ℝ → (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)))
2928ralimdva 3144 . . . . . 6 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)))
3029imp 406 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ))
31 fveq2 6822 . . . . . 6 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3231iundisj2 25477 . . . . 5 Disj 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))
33 eqid 2731 . . . . . 6 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))
34 eqid 2731 . . . . . 6 (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))) = (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
3533, 34voliun 25482 . . . . 5 ((∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ) ∧ Disj 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ))
3630, 32, 35sylancl 586 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ))
3731iundisj 25476 . . . . . 6 𝑘 ∈ ℕ (𝐹𝑘) = 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))
38 ffn 6651 . . . . . . . 8 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
3938ad2antrr 726 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝐹 Fn ℕ)
40 fniunfv 7181 . . . . . . 7 (𝐹 Fn ℕ → 𝑘 ∈ ℕ (𝐹𝑘) = ran 𝐹)
4139, 40syl 17 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝑘 ∈ ℕ (𝐹𝑘) = ran 𝐹)
4237, 41eqtr3id 2780 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ran 𝐹)
4342fveq2d 6826 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘ ran 𝐹))
44 1z 12502 . . . . . . . . . . 11 1 ∈ ℤ
45 seqfn 13920 . . . . . . . . . . 11 (1 ∈ ℤ → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1))
4644, 45ax-mp 5 . . . . . . . . . 10 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1)
476fneq2i 6579 . . . . . . . . . 10 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ ↔ seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1))
4846, 47mpbir 231 . . . . . . . . 9 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ
4948a1i 11 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ)
50 volf 25457 . . . . . . . . . 10 vol:dom vol⟶(0[,]+∞)
51 simpll 766 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
52 fco 6675 . . . . . . . . . 10 ((vol:dom vol⟶(0[,]+∞) ∧ 𝐹:ℕ⟶dom vol) → (vol ∘ 𝐹):ℕ⟶(0[,]+∞))
5350, 51, 52sylancr 587 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol ∘ 𝐹):ℕ⟶(0[,]+∞))
5453ffnd 6652 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol ∘ 𝐹) Fn ℕ)
55 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 1 → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1))
56 2fveq3 6827 . . . . . . . . . . . . 13 (𝑥 = 1 → (vol‘(𝐹𝑥)) = (vol‘(𝐹‘1)))
5755, 56eqeq12d 2747 . . . . . . . . . . . 12 (𝑥 = 1 → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1))))
5857imbi2d 340 . . . . . . . . . . 11 (𝑥 = 1 → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1)))))
59 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑗 → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗))
60 2fveq3 6827 . . . . . . . . . . . . 13 (𝑥 = 𝑗 → (vol‘(𝐹𝑥)) = (vol‘(𝐹𝑗)))
6159, 60eqeq12d 2747 . . . . . . . . . . . 12 (𝑥 = 𝑗 → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))))
6261imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝑗 → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)))))
63 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = (𝑗 + 1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)))
64 2fveq3 6827 . . . . . . . . . . . . 13 (𝑥 = (𝑗 + 1) → (vol‘(𝐹𝑥)) = (vol‘(𝐹‘(𝑗 + 1))))
6563, 64eqeq12d 2747 . . . . . . . . . . . 12 (𝑥 = (𝑗 + 1) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))
6665imbi2d 340 . . . . . . . . . . 11 (𝑥 = (𝑗 + 1) → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
67 seq1 13921 . . . . . . . . . . . . . 14 (1 ∈ ℤ → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1))
6844, 67ax-mp 5 . . . . . . . . . . . . 13 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1)
69 1nn 12136 . . . . . . . . . . . . . 14 1 ∈ ℕ
70 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 1 → (1..^𝑘) = (1..^1))
71 fzo0 13583 . . . . . . . . . . . . . . . . . . . . . 22 (1..^1) = ∅
7270, 71eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 1 → (1..^𝑘) = ∅)
7372iuneq1d 4967 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 1 → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = 𝑚 ∈ ∅ (𝐹𝑚))
74 0iun 5009 . . . . . . . . . . . . . . . . . . . 20 𝑚 ∈ ∅ (𝐹𝑚) = ∅
7573, 74eqtrdi 2782 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = ∅)
7675difeq2d 4073 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ((𝐹𝑘) ∖ ∅))
77 dif0 4325 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) ∖ ∅) = (𝐹𝑘)
7876, 77eqtrdi 2782 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = (𝐹𝑘))
79 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
8078, 79eqtrd 2766 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = (𝐹‘1))
8180fveq2d 6826 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘(𝐹‘1)))
82 fvex 6835 . . . . . . . . . . . . . . 15 (vol‘(𝐹‘1)) ∈ V
8381, 34, 82fvmpt 6929 . . . . . . . . . . . . . 14 (1 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1) = (vol‘(𝐹‘1)))
8469, 83ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1) = (vol‘(𝐹‘1))
8568, 84eqtri 2754 . . . . . . . . . . . 12 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1))
8685a1i 11 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1)))
87 oveq1 7353 . . . . . . . . . . . . . 14 ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
88 seqp1 13923 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
8988, 6eleq2s 2849 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
9089adantl 481 . . . . . . . . . . . . . . 15 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
91 undif2 4424 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1)))
92 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
93 fvoveq1 7369 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑗 + 1)))
9492, 93sseq12d 3963 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1))))
95 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
96 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
9794, 95, 96rspcdva 3573 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1)))
98 ssequn1 4133 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1)) ↔ ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1)))
9997, 98sylib 218 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1)))
10091, 99eqtr2id 2779 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) = ((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
101100fveq2d 6826 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
102 simplll 774 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶dom vol)
103102, 96ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ dom vol)
104 peano2nn 12137 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
105104adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
106102, 105ffvelcdmd 7018 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ∈ dom vol)
107 difmbl 25471 . . . . . . . . . . . . . . . . . 18 (((𝐹‘(𝑗 + 1)) ∈ dom vol ∧ (𝐹𝑗) ∈ dom vol) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol)
108106, 103, 107syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol)
109 disjdif 4419 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅
110109a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅)
111 2fveq3 6827 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (vol‘(𝐹𝑘)) = (vol‘(𝐹𝑗)))
112111eleq1d 2816 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol‘(𝐹𝑗)) ∈ ℝ))
113 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ)
114112, 113, 96rspcdva 3573 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹𝑗)) ∈ ℝ)
115 mblvol 25458 . . . . . . . . . . . . . . . . . . 19 (((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
116108, 115syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
117 difssd 4084 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ⊆ (𝐹‘(𝑗 + 1)))
118 mblss 25459 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑗 + 1)) ∈ dom vol → (𝐹‘(𝑗 + 1)) ⊆ ℝ)
119106, 118syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ⊆ ℝ)
120 mblvol 25458 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘(𝑗 + 1)) ∈ dom vol → (vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1))))
121106, 120syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1))))
122 2fveq3 6827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → (vol‘(𝐹𝑘)) = (vol‘(𝐹‘(𝑗 + 1))))
123122eleq1d 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑗 + 1) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ))
124123, 113, 105rspcdva 3573 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ)
125121, 124eqeltrrd 2832 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ)
126 ovolsscl 25414 . . . . . . . . . . . . . . . . . . 19 ((((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ⊆ (𝐹‘(𝑗 + 1)) ∧ (𝐹‘(𝑗 + 1)) ⊆ ℝ ∧ (vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ) → (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
127117, 119, 125, 126syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
128116, 127eqeltrd 2831 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
129 volun 25473 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑗) ∈ dom vol ∧ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol ∧ ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅) ∧ ((vol‘(𝐹𝑗)) ∈ ℝ ∧ (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)) → (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
130103, 108, 110, 114, 128, 129syl32anc 1380 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
13195adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
132 elfznn 13453 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑗) → 𝑚 ∈ ℕ)
133132adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑚 ∈ ℕ)
134 elfzuz3 13421 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑗) → 𝑗 ∈ (ℤ𝑚))
135134adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑗 ∈ (ℤ𝑚))
136 volsuplem 25483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝑚 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑚))) → (𝐹𝑚) ⊆ (𝐹𝑗))
137131, 133, 135, 136syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → (𝐹𝑚) ⊆ (𝐹𝑗))
138137ralrimiva 3124 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
139 iunss 4992 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗) ↔ ∀𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
140138, 139sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
14196, 6eleqtrdi 2841 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
142 eluzfz2 13432 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ (1...𝑗))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (1...𝑗))
144 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
145144ssiun2s 4995 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (1...𝑗) → (𝐹𝑗) ⊆ 𝑚 ∈ (1...𝑗)(𝐹𝑚))
146143, 145syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ⊆ 𝑚 ∈ (1...𝑗)(𝐹𝑚))
147140, 146eqssd 3947 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) = (𝐹𝑗))
14896nnzd 12495 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
149 fzval3 13634 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℤ → (1...𝑗) = (1..^(𝑗 + 1)))
150148, 149syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (1...𝑗) = (1..^(𝑗 + 1)))
151150iuneq1d 4967 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
152147, 151eqtr3d 2768 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
153152difeq2d 4073 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) = ((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚)))
154153fveq2d 6826 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
155 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
156 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑗 + 1) → (1..^𝑘) = (1..^(𝑗 + 1)))
157156iuneq1d 4967 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
158155, 157difeq12d 4074 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚)))
159158fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (𝑗 + 1) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
160 fvex 6835 . . . . . . . . . . . . . . . . . . . 20 (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))) ∈ V
161159, 34, 160fvmpt 6929 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
162105, 161syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
163154, 162eqtr4d 2769 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)))
164163oveq2d 7362 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
165101, 130, 1643eqtrd 2770 . . . . . . . . . . . . . . 15 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
16690, 165eqeq12d 2747 . . . . . . . . . . . . . 14 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))) ↔ ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)))))
16787, 166imbitrrid 246 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))
168167expcom 413 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
169168a2d 29 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))) → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
17058, 62, 66, 62, 86, 169nnind 12143 . . . . . . . . . 10 (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))))
171170impcom 407 . . . . . . . . 9 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)))
172 fvco3 6921 . . . . . . . . . 10 ((𝐹:ℕ⟶dom vol ∧ 𝑗 ∈ ℕ) → ((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹𝑗)))
17351, 172sylan 580 . . . . . . . . 9 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹𝑗)))
174171, 173eqtr4d 2769 . . . . . . . 8 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = ((vol ∘ 𝐹)‘𝑗))
17549, 54, 174eqfnfvd 6967 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = (vol ∘ 𝐹))
176175rneqd 5877 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = ran (vol ∘ 𝐹))
177 rnco2 6201 . . . . . 6 ran (vol ∘ 𝐹) = (vol “ ran 𝐹)
178176, 177eqtrdi 2782 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = (vol “ ran 𝐹))
179178supeq1d 9330 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ) = sup((vol “ ran 𝐹), ℝ*, < ))
18036, 43, 1793eqtr3d 2774 . . 3 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
181180ex 412 . 2 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
182 rexnal 3084 . . 3 (∃𝑘 ∈ ℕ ¬ (vol‘(𝐹𝑘)) ∈ ℝ ↔ ¬ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ)
183 fniunfv 7181 . . . . . . . . . . . 12 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
18438, 183syl 17 . . . . . . . . . . 11 (𝐹:ℕ⟶dom vol → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
185 ffvelcdm 7014 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ dom vol)
186185ralrimiva 3124 . . . . . . . . . . . 12 (𝐹:ℕ⟶dom vol → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
187 iunmbl 25481 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
188186, 187syl 17 . . . . . . . . . . 11 (𝐹:ℕ⟶dom vol → 𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
189184, 188eqeltrrd 2832 . . . . . . . . . 10 (𝐹:ℕ⟶dom vol → ran 𝐹 ∈ dom vol)
190189ad2antrr 726 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ran 𝐹 ∈ dom vol)
191 mblss 25459 . . . . . . . . 9 ( ran 𝐹 ∈ dom vol → ran 𝐹 ⊆ ℝ)
192190, 191syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ran 𝐹 ⊆ ℝ)
193 ovolcl 25406 . . . . . . . 8 ( ran 𝐹 ⊆ ℝ → (vol*‘ ran 𝐹) ∈ ℝ*)
194192, 193syl 17 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) ∈ ℝ*)
195 pnfge 13029 . . . . . . 7 ((vol*‘ ran 𝐹) ∈ ℝ* → (vol*‘ ran 𝐹) ≤ +∞)
196194, 195syl 17 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) ≤ +∞)
197 simprr 772 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ¬ (vol‘(𝐹𝑘)) ∈ ℝ)
1981ad2ant2r 747 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ dom vol)
199198, 18syl 17 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ℝ)
200 ovolcl 25406 . . . . . . . . . . . 12 ((𝐹𝑘) ⊆ ℝ → (vol*‘(𝐹𝑘)) ∈ ℝ*)
201199, 200syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ∈ ℝ*)
202 xrrebnd 13067 . . . . . . . . . . 11 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((vol*‘(𝐹𝑘)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
203201, 202syl 17 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
204198, 20syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
205204eleq1d 2816 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol*‘(𝐹𝑘)) ∈ ℝ))
206 ovolge0 25409 . . . . . . . . . . . . 13 ((𝐹𝑘) ⊆ ℝ → 0 ≤ (vol*‘(𝐹𝑘)))
207 mnflt0 13024 . . . . . . . . . . . . . 14 -∞ < 0
208 mnfxr 11169 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
209 0xr 11159 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
210 xrltletr 13056 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘(𝐹𝑘)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹𝑘))) → -∞ < (vol*‘(𝐹𝑘))))
211208, 209, 210mp3an12 1453 . . . . . . . . . . . . . 14 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹𝑘))) → -∞ < (vol*‘(𝐹𝑘))))
212207, 211mpani 696 . . . . . . . . . . . . 13 ((vol*‘(𝐹𝑘)) ∈ ℝ* → (0 ≤ (vol*‘(𝐹𝑘)) → -∞ < (vol*‘(𝐹𝑘))))
213200, 206, 212sylc 65 . . . . . . . . . . . 12 ((𝐹𝑘) ⊆ ℝ → -∞ < (vol*‘(𝐹𝑘)))
214199, 213syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → -∞ < (vol*‘(𝐹𝑘)))
215214biantrurd 532 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) < +∞ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
216203, 205, 2153bitr4d 311 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol*‘(𝐹𝑘)) < +∞))
217197, 216mtbid 324 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ¬ (vol*‘(𝐹𝑘)) < +∞)
218 nltpnft 13063 . . . . . . . . 9 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((vol*‘(𝐹𝑘)) = +∞ ↔ ¬ (vol*‘(𝐹𝑘)) < +∞))
219201, 218syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) = +∞ ↔ ¬ (vol*‘(𝐹𝑘)) < +∞))
220217, 219mpbird 257 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) = +∞)
22138ad2antrr 726 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹 Fn ℕ)
222 simprl 770 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝑘 ∈ ℕ)
223 fnfvelrn 7013 . . . . . . . . . 10 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ran 𝐹)
224221, 222, 223syl2anc 584 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ ran 𝐹)
225 elssuni 4887 . . . . . . . . 9 ((𝐹𝑘) ∈ ran 𝐹 → (𝐹𝑘) ⊆ ran 𝐹)
226224, 225syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ran 𝐹)
227 ovolss 25413 . . . . . . . 8 (((𝐹𝑘) ⊆ ran 𝐹 ran 𝐹 ⊆ ℝ) → (vol*‘(𝐹𝑘)) ≤ (vol*‘ ran 𝐹))
228226, 192, 227syl2anc 584 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ≤ (vol*‘ ran 𝐹))
229220, 228eqbrtrrd 5113 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → +∞ ≤ (vol*‘ ran 𝐹))
230 pnfxr 11166 . . . . . . 7 +∞ ∈ ℝ*
231 xrletri3 13053 . . . . . . 7 (((vol*‘ ran 𝐹) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘ ran 𝐹) = +∞ ↔ ((vol*‘ ran 𝐹) ≤ +∞ ∧ +∞ ≤ (vol*‘ ran 𝐹))))
232194, 230, 231sylancl 586 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘ ran 𝐹) = +∞ ↔ ((vol*‘ ran 𝐹) ≤ +∞ ∧ +∞ ≤ (vol*‘ ran 𝐹))))
233196, 229, 232mpbir2and 713 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) = +∞)
234 mblvol 25458 . . . . . 6 ( ran 𝐹 ∈ dom vol → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
235190, 234syl 17 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
236 imassrn 6019 . . . . . . 7 (vol “ ran 𝐹) ⊆ ran vol
237 frn 6658 . . . . . . . . 9 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
23850, 237ax-mp 5 . . . . . . . 8 ran vol ⊆ (0[,]+∞)
239 iccssxr 13330 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
240238, 239sstri 3939 . . . . . . 7 ran vol ⊆ ℝ*
241236, 240sstri 3939 . . . . . 6 (vol “ ran 𝐹) ⊆ ℝ*
242204, 220eqtrd 2766 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = +∞)
243 simpll 766 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol)
244 ffun 6654 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → Fun vol)
24550, 244ax-mp 5 . . . . . . . . 9 Fun vol
246 frn 6658 . . . . . . . . 9 (𝐹:ℕ⟶dom vol → ran 𝐹 ⊆ dom vol)
247 funfvima2 7165 . . . . . . . . 9 ((Fun vol ∧ ran 𝐹 ⊆ dom vol) → ((𝐹𝑘) ∈ ran 𝐹 → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹)))
248245, 246, 247sylancr 587 . . . . . . . 8 (𝐹:ℕ⟶dom vol → ((𝐹𝑘) ∈ ran 𝐹 → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹)))
249243, 224, 248sylc 65 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹))
250242, 249eqeltrrd 2832 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → +∞ ∈ (vol “ ran 𝐹))
251 supxrpnf 13217 . . . . . 6 (((vol “ ran 𝐹) ⊆ ℝ* ∧ +∞ ∈ (vol “ ran 𝐹)) → sup((vol “ ran 𝐹), ℝ*, < ) = +∞)
252241, 250, 251sylancr 587 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → sup((vol “ ran 𝐹), ℝ*, < ) = +∞)
253233, 235, 2523eqtr4d 2776 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
254253rexlimdvaa 3134 . . 3 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∃𝑘 ∈ ℕ ¬ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
255182, 254biimtrrid 243 . 2 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (¬ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
256181, 255pm2.61d 179 1 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280   cuni 4856   ciun 4939  Disj wdisj 5056   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cima 5617  ccom 5618  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  cn 12125  cz 12468  cuz 12732  [,]cicc 13248  ...cfz 13407  ..^cfzo 13554  seqcseq 13908  vol*covol 25390  volcvol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xadd 13012  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-xmet 21284  df-met 21285  df-ovol 25392  df-vol 25393
This theorem is referenced by:  volsup2  25533  itg1climres  25642  itg2gt0  25688
  Copyright terms: Public domain W3C validator