Step | Hyp | Ref
| Expression |
1 | | ffvelrn 6959 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶dom vol ∧
𝑘 ∈ ℕ) →
(𝐹‘𝑘) ∈ dom vol) |
2 | 1 | ad2ant2r 744 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (𝐹‘𝑘) ∈ dom vol) |
3 | | fzofi 13694 |
. . . . . . . . . . 11
⊢
(1..^𝑘) ∈
Fin |
4 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol) |
5 | | elfzouz 13391 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1..^𝑘) → 𝑚 ∈
(ℤ≥‘1)) |
6 | | nnuz 12621 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
7 | 5, 6 | eleqtrrdi 2850 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (1..^𝑘) → 𝑚 ∈ ℕ) |
8 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶dom vol ∧
𝑚 ∈ ℕ) →
(𝐹‘𝑚) ∈ dom vol) |
9 | 4, 7, 8 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) ∧ 𝑚 ∈ (1..^𝑘)) → (𝐹‘𝑚) ∈ dom vol) |
10 | 9 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ∀𝑚 ∈ (1..^𝑘)(𝐹‘𝑚) ∈ dom vol) |
11 | | finiunmbl 24708 |
. . . . . . . . . . 11
⊢
(((1..^𝑘) ∈ Fin
∧ ∀𝑚 ∈
(1..^𝑘)(𝐹‘𝑚) ∈ dom vol) → ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚) ∈ dom vol) |
12 | 3, 10, 11 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚) ∈ dom vol) |
13 | | difmbl 24707 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑘) ∈ dom vol ∧ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚) ∈ dom vol) → ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ∈ dom vol) |
14 | 2, 12, 13 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ∈ dom vol) |
15 | | mblvol 24694 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ∈ dom vol → (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) = (vol*‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))) |
16 | 14, 15 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) = (vol*‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))) |
17 | | difssd 4067 |
. . . . . . . . . . 11
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ⊆ (𝐹‘𝑘)) |
18 | | mblss 24695 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑘) ∈ dom vol → (𝐹‘𝑘) ⊆ ℝ) |
19 | 2, 18 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (𝐹‘𝑘) ⊆ ℝ) |
20 | | mblvol 24694 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑘) ∈ dom vol → (vol‘(𝐹‘𝑘)) = (vol*‘(𝐹‘𝑘))) |
21 | 2, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol‘(𝐹‘𝑘)) = (vol*‘(𝐹‘𝑘))) |
22 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol‘(𝐹‘𝑘)) ∈ ℝ) |
23 | 21, 22 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol*‘(𝐹‘𝑘)) ∈ ℝ) |
24 | | ovolsscl 24650 |
. . . . . . . . . . 11
⊢ ((((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ⊆ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ⊆ ℝ ∧ (vol*‘(𝐹‘𝑘)) ∈ ℝ) → (vol*‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) ∈ ℝ) |
25 | 17, 19, 23, 24 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) →
(vol*‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) ∈ ℝ) |
26 | 16, 25 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) ∈ ℝ) |
27 | 14, 26 | jca 512 |
. . . . . . . 8
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ∈ dom vol ∧ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) ∈ ℝ)) |
28 | 27 | expr 457 |
. . . . . . 7
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ 𝑘 ∈ ℕ) → ((vol‘(𝐹‘𝑘)) ∈ ℝ → (((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ∈ dom vol ∧ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) ∈ ℝ))) |
29 | 28 | ralimdva 3108 |
. . . . . 6
⊢ ((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ → ∀𝑘 ∈ ℕ (((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ∈ dom vol ∧ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) ∈ ℝ))) |
30 | 29 | imp 407 |
. . . . 5
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → ∀𝑘 ∈ ℕ (((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ∈ dom vol ∧ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) ∈ ℝ)) |
31 | | fveq2 6774 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
32 | 31 | iundisj2 24713 |
. . . . 5
⊢
Disj 𝑘 ∈
ℕ ((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) |
33 | | eqid 2738 |
. . . . . 6
⊢ seq1( + ,
(𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) |
34 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))) = (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))) |
35 | 33, 34 | voliun 24718 |
. . . . 5
⊢
((∀𝑘 ∈
ℕ (((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) ∈ dom vol ∧ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) ∈ ℝ) ∧ Disj 𝑘 ∈ ℕ ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) → (vol‘∪ 𝑘 ∈ ℕ ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))), ℝ*, <
)) |
36 | 30, 32, 35 | sylancl 586 |
. . . 4
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (vol‘∪ 𝑘 ∈ ℕ ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))), ℝ*, <
)) |
37 | 31 | iundisj 24712 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ℕ (𝐹‘𝑘) = ∪ 𝑘 ∈ ℕ ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) |
38 | | ffn 6600 |
. . . . . . . 8
⊢ (𝐹:ℕ⟶dom vol →
𝐹 Fn
ℕ) |
39 | 38 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → 𝐹 Fn ℕ) |
40 | | fniunfv 7120 |
. . . . . . 7
⊢ (𝐹 Fn ℕ → ∪ 𝑘 ∈ ℕ (𝐹‘𝑘) = ∪ ran 𝐹) |
41 | 39, 40 | syl 17 |
. . . . . 6
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → ∪ 𝑘 ∈ ℕ (𝐹‘𝑘) = ∪ ran 𝐹) |
42 | 37, 41 | eqtr3id 2792 |
. . . . 5
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → ∪ 𝑘 ∈ ℕ ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) = ∪ ran 𝐹) |
43 | 42 | fveq2d 6778 |
. . . 4
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (vol‘∪ 𝑘 ∈ ℕ ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) = (vol‘∪
ran 𝐹)) |
44 | | 1z 12350 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
45 | | seqfn 13733 |
. . . . . . . . . . 11
⊢ (1 ∈
ℤ → seq1( + , (𝑘
∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) Fn
(ℤ≥‘1)) |
46 | 44, 45 | ax-mp 5 |
. . . . . . . . . 10
⊢ seq1( + ,
(𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) Fn
(ℤ≥‘1) |
47 | 6 | fneq2i 6531 |
. . . . . . . . . 10
⊢ (seq1( +
, (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) Fn ℕ ↔ seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) Fn
(ℤ≥‘1)) |
48 | 46, 47 | mpbir 230 |
. . . . . . . . 9
⊢ seq1( + ,
(𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) Fn ℕ |
49 | 48 | a1i 11 |
. . . . . . . 8
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) Fn ℕ) |
50 | | volf 24693 |
. . . . . . . . . 10
⊢ vol:dom
vol⟶(0[,]+∞) |
51 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → 𝐹:ℕ⟶dom vol) |
52 | | fco 6624 |
. . . . . . . . . 10
⊢ ((vol:dom
vol⟶(0[,]+∞) ∧ 𝐹:ℕ⟶dom vol) → (vol ∘
𝐹):ℕ⟶(0[,]+∞)) |
53 | 50, 51, 52 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (vol ∘ 𝐹):ℕ⟶(0[,]+∞)) |
54 | 53 | ffnd 6601 |
. . . . . . . 8
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (vol ∘ 𝐹) Fn ℕ) |
55 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘1)) |
56 | | 2fveq3 6779 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (vol‘(𝐹‘𝑥)) = (vol‘(𝐹‘1))) |
57 | 55, 56 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → ((seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑥) = (vol‘(𝐹‘𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘1) = (vol‘(𝐹‘1)))) |
58 | 57 | imbi2d 341 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑥) = (vol‘(𝐹‘𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘1) = (vol‘(𝐹‘1))))) |
59 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑗 → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗)) |
60 | | 2fveq3 6779 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑗 → (vol‘(𝐹‘𝑥)) = (vol‘(𝐹‘𝑗))) |
61 | 59, 60 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑗 → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑥) = (vol‘(𝐹‘𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) = (vol‘(𝐹‘𝑗)))) |
62 | 61 | imbi2d 341 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑗 → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑥) = (vol‘(𝐹‘𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) = (vol‘(𝐹‘𝑗))))) |
63 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑗 + 1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1))) |
64 | | 2fveq3 6779 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑗 + 1) → (vol‘(𝐹‘𝑥)) = (vol‘(𝐹‘(𝑗 + 1)))) |
65 | 63, 64 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑗 + 1) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑥) = (vol‘(𝐹‘𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))) |
66 | 65 | imbi2d 341 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑗 + 1) → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑥) = (vol‘(𝐹‘𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))) |
67 | | seq1 13734 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℤ → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘1)) |
68 | 44, 67 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (seq1( +
, (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘1) |
69 | | 1nn 11984 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ |
70 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 1 → (1..^𝑘) = (1..^1)) |
71 | | fzo0 13411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1..^1) =
∅ |
72 | 70, 71 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 1 → (1..^𝑘) = ∅) |
73 | 72 | iuneq1d 4951 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 1 → ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚) = ∪ 𝑚 ∈ ∅ (𝐹‘𝑚)) |
74 | | 0iun 4992 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝑚 ∈ ∅ (𝐹‘𝑚) = ∅ |
75 | 73, 74 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 1 → ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚) = ∅) |
76 | 75 | difeq2d 4057 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 1 → ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) = ((𝐹‘𝑘) ∖ ∅)) |
77 | | dif0 4306 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑘) ∖ ∅) = (𝐹‘𝑘) |
78 | 76, 77 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 → ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) = (𝐹‘𝑘)) |
79 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) |
80 | 78, 79 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 1 → ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) = (𝐹‘1)) |
81 | 80 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) = (vol‘(𝐹‘1))) |
82 | | fvex 6787 |
. . . . . . . . . . . . . . 15
⊢
(vol‘(𝐹‘1)) ∈ V |
83 | 81, 34, 82 | fvmpt 6875 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℕ → ((𝑘 ∈
ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘1) = (vol‘(𝐹‘1))) |
84 | 69, 83 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘1) = (vol‘(𝐹‘1)) |
85 | 68, 84 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ (seq1( +
, (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘1) = (vol‘(𝐹‘1)) |
86 | 85 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘1) = (vol‘(𝐹‘1))) |
87 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ ((seq1( +
, (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) = (vol‘(𝐹‘𝑗)) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹‘𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1)))) |
88 | | seqp1 13736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1)))) |
89 | 88, 6 | eleq2s 2857 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → (seq1( +
, (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1)))) |
90 | 89 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1)))) |
91 | | undif2 4410 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) = ((𝐹‘𝑗) ∪ (𝐹‘(𝑗 + 1))) |
92 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑗 → (𝐹‘𝑛) = (𝐹‘𝑗)) |
93 | | fvoveq1 7298 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑗 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑗 + 1))) |
94 | 92, 93 | sseq12d 3954 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑗 → ((𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹‘𝑗) ⊆ (𝐹‘(𝑗 + 1)))) |
95 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) |
96 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
97 | 94, 95, 96 | rspcdva 3562 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ⊆ (𝐹‘(𝑗 + 1))) |
98 | | ssequn1 4114 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑗) ⊆ (𝐹‘(𝑗 + 1)) ↔ ((𝐹‘𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1))) |
99 | 97, 98 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1))) |
100 | 91, 99 | eqtr2id 2791 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) = ((𝐹‘𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)))) |
101 | 100 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol‘((𝐹‘𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))))) |
102 | | simplll 772 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶dom vol) |
103 | 102, 96 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ dom vol) |
104 | | peano2nn 11985 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) |
105 | 104 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ) |
106 | 102, 105 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ∈ dom vol) |
107 | | difmbl 24707 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘(𝑗 + 1)) ∈ dom vol ∧ (𝐹‘𝑗) ∈ dom vol) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)) ∈ dom vol) |
108 | 106, 103,
107 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)) ∈ dom vol) |
109 | | disjdif 4405 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) = ∅ |
110 | 109 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) = ∅) |
111 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑗 → (vol‘(𝐹‘𝑘)) = (vol‘(𝐹‘𝑗))) |
112 | 111 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑗 → ((vol‘(𝐹‘𝑘)) ∈ ℝ ↔ (vol‘(𝐹‘𝑗)) ∈ ℝ)) |
113 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ
(vol‘(𝐹‘𝑘)) ∈
ℝ) |
114 | 112, 113,
96 | rspcdva 3562 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘𝑗)) ∈ ℝ) |
115 | | mblvol 24694 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)) ∈ dom vol → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)))) |
116 | 108, 115 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)))) |
117 | | difssd 4067 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)) ⊆ (𝐹‘(𝑗 + 1))) |
118 | | mblss 24695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘(𝑗 + 1)) ∈ dom vol → (𝐹‘(𝑗 + 1)) ⊆ ℝ) |
119 | 106, 118 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ⊆ ℝ) |
120 | | mblvol 24694 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘(𝑗 + 1)) ∈ dom vol →
(vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1)))) |
121 | 106, 120 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1)))) |
122 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑗 + 1) → (vol‘(𝐹‘𝑘)) = (vol‘(𝐹‘(𝑗 + 1)))) |
123 | 122 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = (𝑗 + 1) → ((vol‘(𝐹‘𝑘)) ∈ ℝ ↔ (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ)) |
124 | 123, 113,
105 | rspcdva 3562 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ) |
125 | 121, 124 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ) |
126 | | ovolsscl 24650 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)) ⊆ (𝐹‘(𝑗 + 1)) ∧ (𝐹‘(𝑗 + 1)) ⊆ ℝ ∧
(vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ) →
(vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) ∈ ℝ) |
127 | 117, 119,
125, 126 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) ∈ ℝ) |
128 | 116, 127 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) ∈ ℝ) |
129 | | volun 24709 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑗) ∈ dom vol ∧ ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)) ∈ dom vol ∧ ((𝐹‘𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) = ∅) ∧ ((vol‘(𝐹‘𝑗)) ∈ ℝ ∧ (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) ∈ ℝ)) →
(vol‘((𝐹‘𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)))) = ((vol‘(𝐹‘𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))))) |
130 | 103, 108,
110, 114, 128, 129 | syl32anc 1377 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)))) = ((vol‘(𝐹‘𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))))) |
131 | 95 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) |
132 | | elfznn 13285 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ (1...𝑗) → 𝑚 ∈ ℕ) |
133 | 132 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑚 ∈ ℕ) |
134 | | elfzuz3 13253 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ (1...𝑗) → 𝑗 ∈ (ℤ≥‘𝑚)) |
135 | 134 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑗 ∈ (ℤ≥‘𝑚)) |
136 | | volsuplem 24719 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((∀𝑛 ∈
ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝑚 ∈ ℕ ∧ 𝑗 ∈ (ℤ≥‘𝑚))) → (𝐹‘𝑚) ⊆ (𝐹‘𝑗)) |
137 | 131, 133,
135, 136 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → (𝐹‘𝑚) ⊆ (𝐹‘𝑗)) |
138 | 137 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑚 ∈ (1...𝑗)(𝐹‘𝑚) ⊆ (𝐹‘𝑗)) |
139 | | iunss 4975 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∪ 𝑚 ∈ (1...𝑗)(𝐹‘𝑚) ⊆ (𝐹‘𝑗) ↔ ∀𝑚 ∈ (1...𝑗)(𝐹‘𝑚) ⊆ (𝐹‘𝑗)) |
140 | 138, 139 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∪ 𝑚 ∈ (1...𝑗)(𝐹‘𝑚) ⊆ (𝐹‘𝑗)) |
141 | 96, 6 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
(ℤ≥‘1)) |
142 | | eluzfz2 13264 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈
(ℤ≥‘1) → 𝑗 ∈ (1...𝑗)) |
143 | 141, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (1...𝑗)) |
144 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = 𝑗 → (𝐹‘𝑚) = (𝐹‘𝑗)) |
145 | 144 | ssiun2s 4978 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (1...𝑗) → (𝐹‘𝑗) ⊆ ∪
𝑚 ∈ (1...𝑗)(𝐹‘𝑚)) |
146 | 143, 145 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ⊆ ∪
𝑚 ∈ (1...𝑗)(𝐹‘𝑚)) |
147 | 140, 146 | eqssd 3938 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∪ 𝑚 ∈ (1...𝑗)(𝐹‘𝑚) = (𝐹‘𝑗)) |
148 | 96 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ) |
149 | | fzval3 13456 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℤ →
(1...𝑗) = (1..^(𝑗 + 1))) |
150 | 148, 149 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (1...𝑗) = (1..^(𝑗 + 1))) |
151 | 150 | iuneq1d 4951 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∪ 𝑚 ∈ (1...𝑗)(𝐹‘𝑚) = ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚)) |
152 | 147, 151 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚)) |
153 | 152 | difeq2d 4057 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)) = ((𝐹‘(𝑗 + 1)) ∖ ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚))) |
154 | 153 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚)))) |
155 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑗 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑗 + 1))) |
156 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑗 + 1) → (1..^𝑘) = (1..^(𝑗 + 1))) |
157 | 156 | iuneq1d 4951 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑗 + 1) → ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚) = ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚)) |
158 | 155, 157 | difeq12d 4058 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = (𝑗 + 1) → ((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)) = ((𝐹‘(𝑗 + 1)) ∖ ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚))) |
159 | 158 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = (𝑗 + 1) → (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚)))) |
160 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(vol‘((𝐹‘(𝑗 + 1)) ∖ ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚))) ∈ V |
161 | 159, 34, 160 | fvmpt 6875 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 + 1) ∈ ℕ →
((𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚)))) |
162 | 105, 161 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ ∪ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹‘𝑚)))) |
163 | 154, 162 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗))) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1))) |
164 | 163 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol‘(𝐹‘𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹‘𝑗)))) = ((vol‘(𝐹‘𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1)))) |
165 | 101, 130,
164 | 3eqtrd 2782 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = ((vol‘(𝐹‘𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1)))) |
166 | 90, 165 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))) ↔ ((seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹‘𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))‘(𝑗 + 1))))) |
167 | 87, 166 | syl5ibr 245 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) = (vol‘(𝐹‘𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))) |
168 | 167 | expcom 414 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → ((seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) = (vol‘(𝐹‘𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹‘𝑘) ∖ ∪
𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))) |
169 | 168 | a2d 29 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) = (vol‘(𝐹‘𝑗))) → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))) |
170 | 58, 62, 66, 62, 86, 169 | nnind 11991 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) = (vol‘(𝐹‘𝑗)))) |
171 | 170 | impcom 408 |
. . . . . . . . 9
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) = (vol‘(𝐹‘𝑗))) |
172 | | fvco3 6867 |
. . . . . . . . . 10
⊢ ((𝐹:ℕ⟶dom vol ∧
𝑗 ∈ ℕ) →
((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹‘𝑗))) |
173 | 51, 172 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹‘𝑗))) |
174 | 171, 173 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚)))))‘𝑗) = ((vol ∘ 𝐹)‘𝑗)) |
175 | 49, 54, 174 | eqfnfvd 6912 |
. . . . . . 7
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) = (vol ∘ 𝐹)) |
176 | 175 | rneqd 5847 |
. . . . . 6
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → ran seq1( + ,
(𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) = ran (vol ∘ 𝐹)) |
177 | | rnco2 6157 |
. . . . . 6
⊢ ran (vol
∘ 𝐹) = (vol “
ran 𝐹) |
178 | 176, 177 | eqtrdi 2794 |
. . . . 5
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → ran seq1( + ,
(𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))) = (vol “ ran 𝐹)) |
179 | 178 | supeq1d 9205 |
. . . 4
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → sup(ran seq1( + ,
(𝑘 ∈ ℕ ↦
(vol‘((𝐹‘𝑘) ∖ ∪ 𝑚 ∈ (1..^𝑘)(𝐹‘𝑚))))), ℝ*, < ) = sup((vol
“ ran 𝐹),
ℝ*, < )) |
180 | 36, 43, 179 | 3eqtr3d 2786 |
. . 3
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ) → (vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, <
)) |
181 | 180 | ex 413 |
. 2
⊢ ((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹‘𝑘)) ∈ ℝ → (vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, <
))) |
182 | | rexnal 3169 |
. . 3
⊢
(∃𝑘 ∈
ℕ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ ↔ ¬ ∀𝑘 ∈ ℕ
(vol‘(𝐹‘𝑘)) ∈
ℝ) |
183 | | fniunfv 7120 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn ℕ → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ ran 𝐹) |
184 | 38, 183 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹:ℕ⟶dom vol →
∪ 𝑛 ∈ ℕ (𝐹‘𝑛) = ∪ ran 𝐹) |
185 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶dom vol ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ dom vol) |
186 | 185 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝐹:ℕ⟶dom vol →
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ∈ dom vol) |
187 | | iunmbl 24717 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛) ∈ dom vol → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) ∈ dom vol) |
188 | 186, 187 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹:ℕ⟶dom vol →
∪ 𝑛 ∈ ℕ (𝐹‘𝑛) ∈ dom vol) |
189 | 184, 188 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝐹:ℕ⟶dom vol →
∪ ran 𝐹 ∈ dom vol) |
190 | 189 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ∪ ran 𝐹 ∈ dom vol) |
191 | | mblss 24695 |
. . . . . . . . 9
⊢ (∪ ran 𝐹 ∈ dom vol → ∪ ran 𝐹 ⊆ ℝ) |
192 | 190, 191 | syl 17 |
. . . . . . . 8
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ∪ ran 𝐹 ⊆ ℝ) |
193 | | ovolcl 24642 |
. . . . . . . 8
⊢ (∪ ran 𝐹 ⊆ ℝ → (vol*‘∪ ran 𝐹) ∈
ℝ*) |
194 | 192, 193 | syl 17 |
. . . . . . 7
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol*‘∪ ran 𝐹) ∈
ℝ*) |
195 | | pnfge 12866 |
. . . . . . 7
⊢
((vol*‘∪ ran 𝐹) ∈ ℝ* →
(vol*‘∪ ran 𝐹) ≤ +∞) |
196 | 194, 195 | syl 17 |
. . . . . 6
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol*‘∪ ran 𝐹) ≤ +∞) |
197 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ¬
(vol‘(𝐹‘𝑘)) ∈
ℝ) |
198 | 1 | ad2ant2r 744 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (𝐹‘𝑘) ∈ dom vol) |
199 | 198, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (𝐹‘𝑘) ⊆ ℝ) |
200 | | ovolcl 24642 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑘) ⊆ ℝ → (vol*‘(𝐹‘𝑘)) ∈
ℝ*) |
201 | 199, 200 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol*‘(𝐹‘𝑘)) ∈
ℝ*) |
202 | | xrrebnd 12902 |
. . . . . . . . . . 11
⊢
((vol*‘(𝐹‘𝑘)) ∈ ℝ* →
((vol*‘(𝐹‘𝑘)) ∈ ℝ ↔
(-∞ < (vol*‘(𝐹‘𝑘)) ∧ (vol*‘(𝐹‘𝑘)) < +∞))) |
203 | 201, 202 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) →
((vol*‘(𝐹‘𝑘)) ∈ ℝ ↔
(-∞ < (vol*‘(𝐹‘𝑘)) ∧ (vol*‘(𝐹‘𝑘)) < +∞))) |
204 | 198, 20 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol‘(𝐹‘𝑘)) = (vol*‘(𝐹‘𝑘))) |
205 | 204 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ((vol‘(𝐹‘𝑘)) ∈ ℝ ↔ (vol*‘(𝐹‘𝑘)) ∈ ℝ)) |
206 | | ovolge0 24645 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑘) ⊆ ℝ → 0 ≤
(vol*‘(𝐹‘𝑘))) |
207 | | mnflt0 12861 |
. . . . . . . . . . . . . 14
⊢ -∞
< 0 |
208 | | mnfxr 11032 |
. . . . . . . . . . . . . . 15
⊢ -∞
∈ ℝ* |
209 | | 0xr 11022 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ* |
210 | | xrltletr 12891 |
. . . . . . . . . . . . . . 15
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ (vol*‘(𝐹‘𝑘)) ∈ ℝ*) →
((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹‘𝑘))) → -∞ < (vol*‘(𝐹‘𝑘)))) |
211 | 208, 209,
210 | mp3an12 1450 |
. . . . . . . . . . . . . 14
⊢
((vol*‘(𝐹‘𝑘)) ∈ ℝ* →
((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹‘𝑘))) → -∞ < (vol*‘(𝐹‘𝑘)))) |
212 | 207, 211 | mpani 693 |
. . . . . . . . . . . . 13
⊢
((vol*‘(𝐹‘𝑘)) ∈ ℝ* → (0 ≤
(vol*‘(𝐹‘𝑘)) → -∞ <
(vol*‘(𝐹‘𝑘)))) |
213 | 200, 206,
212 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑘) ⊆ ℝ → -∞ <
(vol*‘(𝐹‘𝑘))) |
214 | 199, 213 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → -∞ <
(vol*‘(𝐹‘𝑘))) |
215 | 214 | biantrurd 533 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) →
((vol*‘(𝐹‘𝑘)) < +∞ ↔
(-∞ < (vol*‘(𝐹‘𝑘)) ∧ (vol*‘(𝐹‘𝑘)) < +∞))) |
216 | 203, 205,
215 | 3bitr4d 311 |
. . . . . . . . 9
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ((vol‘(𝐹‘𝑘)) ∈ ℝ ↔ (vol*‘(𝐹‘𝑘)) < +∞)) |
217 | 197, 216 | mtbid 324 |
. . . . . . . 8
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ¬
(vol*‘(𝐹‘𝑘)) <
+∞) |
218 | | nltpnft 12898 |
. . . . . . . . 9
⊢
((vol*‘(𝐹‘𝑘)) ∈ ℝ* →
((vol*‘(𝐹‘𝑘)) = +∞ ↔ ¬
(vol*‘(𝐹‘𝑘)) <
+∞)) |
219 | 201, 218 | syl 17 |
. . . . . . . 8
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) →
((vol*‘(𝐹‘𝑘)) = +∞ ↔ ¬
(vol*‘(𝐹‘𝑘)) <
+∞)) |
220 | 217, 219 | mpbird 256 |
. . . . . . 7
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol*‘(𝐹‘𝑘)) = +∞) |
221 | 38 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → 𝐹 Fn ℕ) |
222 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → 𝑘 ∈ ℕ) |
223 | | fnfvelrn 6958 |
. . . . . . . . . 10
⊢ ((𝐹 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ran 𝐹) |
224 | 221, 222,
223 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (𝐹‘𝑘) ∈ ran 𝐹) |
225 | | elssuni 4871 |
. . . . . . . . 9
⊢ ((𝐹‘𝑘) ∈ ran 𝐹 → (𝐹‘𝑘) ⊆ ∪ ran
𝐹) |
226 | 224, 225 | syl 17 |
. . . . . . . 8
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (𝐹‘𝑘) ⊆ ∪ ran
𝐹) |
227 | | ovolss 24649 |
. . . . . . . 8
⊢ (((𝐹‘𝑘) ⊆ ∪ ran
𝐹 ∧ ∪ ran 𝐹 ⊆ ℝ) → (vol*‘(𝐹‘𝑘)) ≤ (vol*‘∪ ran 𝐹)) |
228 | 226, 192,
227 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol*‘(𝐹‘𝑘)) ≤ (vol*‘∪ ran 𝐹)) |
229 | 220, 228 | eqbrtrrd 5098 |
. . . . . 6
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → +∞ ≤
(vol*‘∪ ran 𝐹)) |
230 | | pnfxr 11029 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
231 | | xrletri3 12888 |
. . . . . . 7
⊢
(((vol*‘∪ ran 𝐹) ∈ ℝ* ∧ +∞
∈ ℝ*) → ((vol*‘∪
ran 𝐹) = +∞ ↔
((vol*‘∪ ran 𝐹) ≤ +∞ ∧ +∞ ≤
(vol*‘∪ ran 𝐹)))) |
232 | 194, 230,
231 | sylancl 586 |
. . . . . 6
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → ((vol*‘∪ ran 𝐹) = +∞ ↔ ((vol*‘∪ ran 𝐹) ≤ +∞ ∧ +∞ ≤
(vol*‘∪ ran 𝐹)))) |
233 | 196, 229,
232 | mpbir2and 710 |
. . . . 5
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol*‘∪ ran 𝐹) = +∞) |
234 | | mblvol 24694 |
. . . . . 6
⊢ (∪ ran 𝐹 ∈ dom vol → (vol‘∪ ran 𝐹) = (vol*‘∪
ran 𝐹)) |
235 | 190, 234 | syl 17 |
. . . . 5
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol‘∪ ran 𝐹) = (vol*‘∪
ran 𝐹)) |
236 | | imassrn 5980 |
. . . . . . 7
⊢ (vol
“ ran 𝐹) ⊆ ran
vol |
237 | | frn 6607 |
. . . . . . . . 9
⊢ (vol:dom
vol⟶(0[,]+∞) → ran vol ⊆
(0[,]+∞)) |
238 | 50, 237 | ax-mp 5 |
. . . . . . . 8
⊢ ran vol
⊆ (0[,]+∞) |
239 | | iccssxr 13162 |
. . . . . . . 8
⊢
(0[,]+∞) ⊆ ℝ* |
240 | 238, 239 | sstri 3930 |
. . . . . . 7
⊢ ran vol
⊆ ℝ* |
241 | 236, 240 | sstri 3930 |
. . . . . 6
⊢ (vol
“ ran 𝐹) ⊆
ℝ* |
242 | 204, 220 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol‘(𝐹‘𝑘)) = +∞) |
243 | | simpll 764 |
. . . . . . . 8
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol) |
244 | | ffun 6603 |
. . . . . . . . . 10
⊢ (vol:dom
vol⟶(0[,]+∞) → Fun vol) |
245 | 50, 244 | ax-mp 5 |
. . . . . . . . 9
⊢ Fun
vol |
246 | | frn 6607 |
. . . . . . . . 9
⊢ (𝐹:ℕ⟶dom vol →
ran 𝐹 ⊆ dom
vol) |
247 | | funfvima2 7107 |
. . . . . . . . 9
⊢ ((Fun vol
∧ ran 𝐹 ⊆ dom
vol) → ((𝐹‘𝑘) ∈ ran 𝐹 → (vol‘(𝐹‘𝑘)) ∈ (vol “ ran 𝐹))) |
248 | 245, 246,
247 | sylancr 587 |
. . . . . . . 8
⊢ (𝐹:ℕ⟶dom vol →
((𝐹‘𝑘) ∈ ran 𝐹 → (vol‘(𝐹‘𝑘)) ∈ (vol “ ran 𝐹))) |
249 | 243, 224,
248 | sylc 65 |
. . . . . . 7
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol‘(𝐹‘𝑘)) ∈ (vol “ ran 𝐹)) |
250 | 242, 249 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → +∞ ∈
(vol “ ran 𝐹)) |
251 | | supxrpnf 13052 |
. . . . . 6
⊢ (((vol
“ ran 𝐹) ⊆
ℝ* ∧ +∞ ∈ (vol “ ran 𝐹)) → sup((vol “ ran 𝐹), ℝ*, < ) =
+∞) |
252 | 241, 250,
251 | sylancr 587 |
. . . . 5
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → sup((vol “
ran 𝐹),
ℝ*, < ) = +∞) |
253 | 233, 235,
252 | 3eqtr4d 2788 |
. . . 4
⊢ (((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ)) → (vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, <
)) |
254 | 253 | rexlimdvaa 3214 |
. . 3
⊢ ((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∃𝑘 ∈ ℕ ¬ (vol‘(𝐹‘𝑘)) ∈ ℝ → (vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, <
))) |
255 | 182, 254 | syl5bir 242 |
. 2
⊢ ((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (¬ ∀𝑘 ∈ ℕ
(vol‘(𝐹‘𝑘)) ∈ ℝ →
(vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, <
))) |
256 | 181, 255 | pm2.61d 179 |
1
⊢ ((𝐹:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, <
)) |