MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup Structured version   Visualization version   GIF version

Theorem volsup 25457
Description: The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
volsup ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
Distinct variable group:   𝑛,𝐹

Proof of Theorem volsup
Dummy variables 𝑗 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7053 . . . . . . . . . . 11 ((𝐹:ℕ⟶dom vol ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ dom vol)
21ad2ant2r 747 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ dom vol)
3 fzofi 13939 . . . . . . . . . . 11 (1..^𝑘) ∈ Fin
4 simpll 766 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol)
5 elfzouz 13624 . . . . . . . . . . . . . 14 (𝑚 ∈ (1..^𝑘) → 𝑚 ∈ (ℤ‘1))
6 nnuz 12836 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
75, 6eleqtrrdi 2839 . . . . . . . . . . . . 13 (𝑚 ∈ (1..^𝑘) → 𝑚 ∈ ℕ)
8 ffvelcdm 7053 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) ∈ dom vol)
94, 7, 8syl2an 596 . . . . . . . . . . . 12 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) ∧ 𝑚 ∈ (1..^𝑘)) → (𝐹𝑚) ∈ dom vol)
109ralrimiva 3125 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ∀𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
11 finiunmbl 25445 . . . . . . . . . . 11 (((1..^𝑘) ∈ Fin ∧ ∀𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
123, 10, 11sylancr 587 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
13 difmbl 25444 . . . . . . . . . 10 (((𝐹𝑘) ∈ dom vol ∧ 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol)
142, 12, 13syl2anc 584 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol)
15 mblvol 25431 . . . . . . . . . . 11 (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
1614, 15syl 17 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
17 difssd 4100 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ⊆ (𝐹𝑘))
18 mblss 25432 . . . . . . . . . . . 12 ((𝐹𝑘) ∈ dom vol → (𝐹𝑘) ⊆ ℝ)
192, 18syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ℝ)
20 mblvol 25431 . . . . . . . . . . . . 13 ((𝐹𝑘) ∈ dom vol → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
212, 20syl 17 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
22 simprr 772 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) ∈ ℝ)
2321, 22eqeltrrd 2829 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ∈ ℝ)
24 ovolsscl 25387 . . . . . . . . . . 11 ((((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ⊆ (𝐹𝑘) ∧ (𝐹𝑘) ⊆ ℝ ∧ (vol*‘(𝐹𝑘)) ∈ ℝ) → (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2517, 19, 23, 24syl3anc 1373 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2616, 25eqeltrd 2828 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2714, 26jca 511 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ))
2827expr 456 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ 𝑘 ∈ ℕ) → ((vol‘(𝐹𝑘)) ∈ ℝ → (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)))
2928ralimdva 3145 . . . . . 6 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)))
3029imp 406 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ))
31 fveq2 6858 . . . . . 6 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3231iundisj2 25450 . . . . 5 Disj 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))
33 eqid 2729 . . . . . 6 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))
34 eqid 2729 . . . . . 6 (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))) = (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
3533, 34voliun 25455 . . . . 5 ((∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ) ∧ Disj 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ))
3630, 32, 35sylancl 586 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ))
3731iundisj 25449 . . . . . 6 𝑘 ∈ ℕ (𝐹𝑘) = 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))
38 ffn 6688 . . . . . . . 8 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
3938ad2antrr 726 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝐹 Fn ℕ)
40 fniunfv 7221 . . . . . . 7 (𝐹 Fn ℕ → 𝑘 ∈ ℕ (𝐹𝑘) = ran 𝐹)
4139, 40syl 17 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝑘 ∈ ℕ (𝐹𝑘) = ran 𝐹)
4237, 41eqtr3id 2778 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ran 𝐹)
4342fveq2d 6862 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘ ran 𝐹))
44 1z 12563 . . . . . . . . . . 11 1 ∈ ℤ
45 seqfn 13978 . . . . . . . . . . 11 (1 ∈ ℤ → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1))
4644, 45ax-mp 5 . . . . . . . . . 10 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1)
476fneq2i 6616 . . . . . . . . . 10 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ ↔ seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1))
4846, 47mpbir 231 . . . . . . . . 9 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ
4948a1i 11 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ)
50 volf 25430 . . . . . . . . . 10 vol:dom vol⟶(0[,]+∞)
51 simpll 766 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
52 fco 6712 . . . . . . . . . 10 ((vol:dom vol⟶(0[,]+∞) ∧ 𝐹:ℕ⟶dom vol) → (vol ∘ 𝐹):ℕ⟶(0[,]+∞))
5350, 51, 52sylancr 587 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol ∘ 𝐹):ℕ⟶(0[,]+∞))
5453ffnd 6689 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol ∘ 𝐹) Fn ℕ)
55 fveq2 6858 . . . . . . . . . . . . 13 (𝑥 = 1 → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1))
56 2fveq3 6863 . . . . . . . . . . . . 13 (𝑥 = 1 → (vol‘(𝐹𝑥)) = (vol‘(𝐹‘1)))
5755, 56eqeq12d 2745 . . . . . . . . . . . 12 (𝑥 = 1 → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1))))
5857imbi2d 340 . . . . . . . . . . 11 (𝑥 = 1 → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1)))))
59 fveq2 6858 . . . . . . . . . . . . 13 (𝑥 = 𝑗 → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗))
60 2fveq3 6863 . . . . . . . . . . . . 13 (𝑥 = 𝑗 → (vol‘(𝐹𝑥)) = (vol‘(𝐹𝑗)))
6159, 60eqeq12d 2745 . . . . . . . . . . . 12 (𝑥 = 𝑗 → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))))
6261imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝑗 → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)))))
63 fveq2 6858 . . . . . . . . . . . . 13 (𝑥 = (𝑗 + 1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)))
64 2fveq3 6863 . . . . . . . . . . . . 13 (𝑥 = (𝑗 + 1) → (vol‘(𝐹𝑥)) = (vol‘(𝐹‘(𝑗 + 1))))
6563, 64eqeq12d 2745 . . . . . . . . . . . 12 (𝑥 = (𝑗 + 1) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))
6665imbi2d 340 . . . . . . . . . . 11 (𝑥 = (𝑗 + 1) → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
67 seq1 13979 . . . . . . . . . . . . . 14 (1 ∈ ℤ → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1))
6844, 67ax-mp 5 . . . . . . . . . . . . 13 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1)
69 1nn 12197 . . . . . . . . . . . . . 14 1 ∈ ℕ
70 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 1 → (1..^𝑘) = (1..^1))
71 fzo0 13644 . . . . . . . . . . . . . . . . . . . . . 22 (1..^1) = ∅
7270, 71eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 1 → (1..^𝑘) = ∅)
7372iuneq1d 4983 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 1 → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = 𝑚 ∈ ∅ (𝐹𝑚))
74 0iun 5027 . . . . . . . . . . . . . . . . . . . 20 𝑚 ∈ ∅ (𝐹𝑚) = ∅
7573, 74eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = ∅)
7675difeq2d 4089 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ((𝐹𝑘) ∖ ∅))
77 dif0 4341 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) ∖ ∅) = (𝐹𝑘)
7876, 77eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = (𝐹𝑘))
79 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
8078, 79eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = (𝐹‘1))
8180fveq2d 6862 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘(𝐹‘1)))
82 fvex 6871 . . . . . . . . . . . . . . 15 (vol‘(𝐹‘1)) ∈ V
8381, 34, 82fvmpt 6968 . . . . . . . . . . . . . 14 (1 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1) = (vol‘(𝐹‘1)))
8469, 83ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1) = (vol‘(𝐹‘1))
8568, 84eqtri 2752 . . . . . . . . . . . 12 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1))
8685a1i 11 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1)))
87 oveq1 7394 . . . . . . . . . . . . . 14 ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
88 seqp1 13981 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
8988, 6eleq2s 2846 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
9089adantl 481 . . . . . . . . . . . . . . 15 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
91 undif2 4440 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1)))
92 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
93 fvoveq1 7410 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑗 + 1)))
9492, 93sseq12d 3980 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1))))
95 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
96 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
9794, 95, 96rspcdva 3589 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1)))
98 ssequn1 4149 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1)) ↔ ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1)))
9997, 98sylib 218 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1)))
10091, 99eqtr2id 2777 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) = ((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
101100fveq2d 6862 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
102 simplll 774 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶dom vol)
103102, 96ffvelcdmd 7057 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ dom vol)
104 peano2nn 12198 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
105104adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
106102, 105ffvelcdmd 7057 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ∈ dom vol)
107 difmbl 25444 . . . . . . . . . . . . . . . . . 18 (((𝐹‘(𝑗 + 1)) ∈ dom vol ∧ (𝐹𝑗) ∈ dom vol) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol)
108106, 103, 107syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol)
109 disjdif 4435 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅
110109a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅)
111 2fveq3 6863 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (vol‘(𝐹𝑘)) = (vol‘(𝐹𝑗)))
112111eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol‘(𝐹𝑗)) ∈ ℝ))
113 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ)
114112, 113, 96rspcdva 3589 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹𝑗)) ∈ ℝ)
115 mblvol 25431 . . . . . . . . . . . . . . . . . . 19 (((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
116108, 115syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
117 difssd 4100 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ⊆ (𝐹‘(𝑗 + 1)))
118 mblss 25432 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑗 + 1)) ∈ dom vol → (𝐹‘(𝑗 + 1)) ⊆ ℝ)
119106, 118syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ⊆ ℝ)
120 mblvol 25431 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘(𝑗 + 1)) ∈ dom vol → (vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1))))
121106, 120syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1))))
122 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → (vol‘(𝐹𝑘)) = (vol‘(𝐹‘(𝑗 + 1))))
123122eleq1d 2813 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑗 + 1) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ))
124123, 113, 105rspcdva 3589 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ)
125121, 124eqeltrrd 2829 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ)
126 ovolsscl 25387 . . . . . . . . . . . . . . . . . . 19 ((((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ⊆ (𝐹‘(𝑗 + 1)) ∧ (𝐹‘(𝑗 + 1)) ⊆ ℝ ∧ (vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ) → (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
127117, 119, 125, 126syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
128116, 127eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
129 volun 25446 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑗) ∈ dom vol ∧ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol ∧ ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅) ∧ ((vol‘(𝐹𝑗)) ∈ ℝ ∧ (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)) → (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
130103, 108, 110, 114, 128, 129syl32anc 1380 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
13195adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
132 elfznn 13514 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑗) → 𝑚 ∈ ℕ)
133132adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑚 ∈ ℕ)
134 elfzuz3 13482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑗) → 𝑗 ∈ (ℤ𝑚))
135134adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑗 ∈ (ℤ𝑚))
136 volsuplem 25456 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝑚 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑚))) → (𝐹𝑚) ⊆ (𝐹𝑗))
137131, 133, 135, 136syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → (𝐹𝑚) ⊆ (𝐹𝑗))
138137ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
139 iunss 5009 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗) ↔ ∀𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
140138, 139sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
14196, 6eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
142 eluzfz2 13493 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ (1...𝑗))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (1...𝑗))
144 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
145144ssiun2s 5012 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (1...𝑗) → (𝐹𝑗) ⊆ 𝑚 ∈ (1...𝑗)(𝐹𝑚))
146143, 145syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ⊆ 𝑚 ∈ (1...𝑗)(𝐹𝑚))
147140, 146eqssd 3964 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) = (𝐹𝑗))
14896nnzd 12556 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
149 fzval3 13695 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℤ → (1...𝑗) = (1..^(𝑗 + 1)))
150148, 149syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (1...𝑗) = (1..^(𝑗 + 1)))
151150iuneq1d 4983 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
152147, 151eqtr3d 2766 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
153152difeq2d 4089 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) = ((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚)))
154153fveq2d 6862 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
155 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
156 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑗 + 1) → (1..^𝑘) = (1..^(𝑗 + 1)))
157156iuneq1d 4983 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
158155, 157difeq12d 4090 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚)))
159158fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (𝑗 + 1) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
160 fvex 6871 . . . . . . . . . . . . . . . . . . . 20 (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))) ∈ V
161159, 34, 160fvmpt 6968 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
162105, 161syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
163154, 162eqtr4d 2767 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)))
164163oveq2d 7403 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
165101, 130, 1643eqtrd 2768 . . . . . . . . . . . . . . 15 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
16690, 165eqeq12d 2745 . . . . . . . . . . . . . 14 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))) ↔ ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)))))
16787, 166imbitrrid 246 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))
168167expcom 413 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
169168a2d 29 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))) → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
17058, 62, 66, 62, 86, 169nnind 12204 . . . . . . . . . 10 (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))))
171170impcom 407 . . . . . . . . 9 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)))
172 fvco3 6960 . . . . . . . . . 10 ((𝐹:ℕ⟶dom vol ∧ 𝑗 ∈ ℕ) → ((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹𝑗)))
17351, 172sylan 580 . . . . . . . . 9 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹𝑗)))
174171, 173eqtr4d 2767 . . . . . . . 8 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = ((vol ∘ 𝐹)‘𝑗))
17549, 54, 174eqfnfvd 7006 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = (vol ∘ 𝐹))
176175rneqd 5902 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = ran (vol ∘ 𝐹))
177 rnco2 6226 . . . . . 6 ran (vol ∘ 𝐹) = (vol “ ran 𝐹)
178176, 177eqtrdi 2780 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = (vol “ ran 𝐹))
179178supeq1d 9397 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ) = sup((vol “ ran 𝐹), ℝ*, < ))
18036, 43, 1793eqtr3d 2772 . . 3 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
181180ex 412 . 2 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
182 rexnal 3082 . . 3 (∃𝑘 ∈ ℕ ¬ (vol‘(𝐹𝑘)) ∈ ℝ ↔ ¬ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ)
183 fniunfv 7221 . . . . . . . . . . . 12 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
18438, 183syl 17 . . . . . . . . . . 11 (𝐹:ℕ⟶dom vol → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
185 ffvelcdm 7053 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ dom vol)
186185ralrimiva 3125 . . . . . . . . . . . 12 (𝐹:ℕ⟶dom vol → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
187 iunmbl 25454 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
188186, 187syl 17 . . . . . . . . . . 11 (𝐹:ℕ⟶dom vol → 𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
189184, 188eqeltrrd 2829 . . . . . . . . . 10 (𝐹:ℕ⟶dom vol → ran 𝐹 ∈ dom vol)
190189ad2antrr 726 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ran 𝐹 ∈ dom vol)
191 mblss 25432 . . . . . . . . 9 ( ran 𝐹 ∈ dom vol → ran 𝐹 ⊆ ℝ)
192190, 191syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ran 𝐹 ⊆ ℝ)
193 ovolcl 25379 . . . . . . . 8 ( ran 𝐹 ⊆ ℝ → (vol*‘ ran 𝐹) ∈ ℝ*)
194192, 193syl 17 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) ∈ ℝ*)
195 pnfge 13090 . . . . . . 7 ((vol*‘ ran 𝐹) ∈ ℝ* → (vol*‘ ran 𝐹) ≤ +∞)
196194, 195syl 17 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) ≤ +∞)
197 simprr 772 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ¬ (vol‘(𝐹𝑘)) ∈ ℝ)
1981ad2ant2r 747 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ dom vol)
199198, 18syl 17 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ℝ)
200 ovolcl 25379 . . . . . . . . . . . 12 ((𝐹𝑘) ⊆ ℝ → (vol*‘(𝐹𝑘)) ∈ ℝ*)
201199, 200syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ∈ ℝ*)
202 xrrebnd 13128 . . . . . . . . . . 11 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((vol*‘(𝐹𝑘)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
203201, 202syl 17 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
204198, 20syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
205204eleq1d 2813 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol*‘(𝐹𝑘)) ∈ ℝ))
206 ovolge0 25382 . . . . . . . . . . . . 13 ((𝐹𝑘) ⊆ ℝ → 0 ≤ (vol*‘(𝐹𝑘)))
207 mnflt0 13085 . . . . . . . . . . . . . 14 -∞ < 0
208 mnfxr 11231 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
209 0xr 11221 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
210 xrltletr 13117 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘(𝐹𝑘)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹𝑘))) → -∞ < (vol*‘(𝐹𝑘))))
211208, 209, 210mp3an12 1453 . . . . . . . . . . . . . 14 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹𝑘))) → -∞ < (vol*‘(𝐹𝑘))))
212207, 211mpani 696 . . . . . . . . . . . . 13 ((vol*‘(𝐹𝑘)) ∈ ℝ* → (0 ≤ (vol*‘(𝐹𝑘)) → -∞ < (vol*‘(𝐹𝑘))))
213200, 206, 212sylc 65 . . . . . . . . . . . 12 ((𝐹𝑘) ⊆ ℝ → -∞ < (vol*‘(𝐹𝑘)))
214199, 213syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → -∞ < (vol*‘(𝐹𝑘)))
215214biantrurd 532 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) < +∞ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
216203, 205, 2153bitr4d 311 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol*‘(𝐹𝑘)) < +∞))
217197, 216mtbid 324 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ¬ (vol*‘(𝐹𝑘)) < +∞)
218 nltpnft 13124 . . . . . . . . 9 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((vol*‘(𝐹𝑘)) = +∞ ↔ ¬ (vol*‘(𝐹𝑘)) < +∞))
219201, 218syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) = +∞ ↔ ¬ (vol*‘(𝐹𝑘)) < +∞))
220217, 219mpbird 257 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) = +∞)
22138ad2antrr 726 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹 Fn ℕ)
222 simprl 770 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝑘 ∈ ℕ)
223 fnfvelrn 7052 . . . . . . . . . 10 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ran 𝐹)
224221, 222, 223syl2anc 584 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ ran 𝐹)
225 elssuni 4901 . . . . . . . . 9 ((𝐹𝑘) ∈ ran 𝐹 → (𝐹𝑘) ⊆ ran 𝐹)
226224, 225syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ran 𝐹)
227 ovolss 25386 . . . . . . . 8 (((𝐹𝑘) ⊆ ran 𝐹 ran 𝐹 ⊆ ℝ) → (vol*‘(𝐹𝑘)) ≤ (vol*‘ ran 𝐹))
228226, 192, 227syl2anc 584 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ≤ (vol*‘ ran 𝐹))
229220, 228eqbrtrrd 5131 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → +∞ ≤ (vol*‘ ran 𝐹))
230 pnfxr 11228 . . . . . . 7 +∞ ∈ ℝ*
231 xrletri3 13114 . . . . . . 7 (((vol*‘ ran 𝐹) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘ ran 𝐹) = +∞ ↔ ((vol*‘ ran 𝐹) ≤ +∞ ∧ +∞ ≤ (vol*‘ ran 𝐹))))
232194, 230, 231sylancl 586 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘ ran 𝐹) = +∞ ↔ ((vol*‘ ran 𝐹) ≤ +∞ ∧ +∞ ≤ (vol*‘ ran 𝐹))))
233196, 229, 232mpbir2and 713 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) = +∞)
234 mblvol 25431 . . . . . 6 ( ran 𝐹 ∈ dom vol → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
235190, 234syl 17 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
236 imassrn 6042 . . . . . . 7 (vol “ ran 𝐹) ⊆ ran vol
237 frn 6695 . . . . . . . . 9 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
23850, 237ax-mp 5 . . . . . . . 8 ran vol ⊆ (0[,]+∞)
239 iccssxr 13391 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
240238, 239sstri 3956 . . . . . . 7 ran vol ⊆ ℝ*
241236, 240sstri 3956 . . . . . 6 (vol “ ran 𝐹) ⊆ ℝ*
242204, 220eqtrd 2764 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = +∞)
243 simpll 766 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol)
244 ffun 6691 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → Fun vol)
24550, 244ax-mp 5 . . . . . . . . 9 Fun vol
246 frn 6695 . . . . . . . . 9 (𝐹:ℕ⟶dom vol → ran 𝐹 ⊆ dom vol)
247 funfvima2 7205 . . . . . . . . 9 ((Fun vol ∧ ran 𝐹 ⊆ dom vol) → ((𝐹𝑘) ∈ ran 𝐹 → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹)))
248245, 246, 247sylancr 587 . . . . . . . 8 (𝐹:ℕ⟶dom vol → ((𝐹𝑘) ∈ ran 𝐹 → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹)))
249243, 224, 248sylc 65 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹))
250242, 249eqeltrrd 2829 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → +∞ ∈ (vol “ ran 𝐹))
251 supxrpnf 13278 . . . . . 6 (((vol “ ran 𝐹) ⊆ ℝ* ∧ +∞ ∈ (vol “ ran 𝐹)) → sup((vol “ ran 𝐹), ℝ*, < ) = +∞)
252241, 250, 251sylancr 587 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → sup((vol “ ran 𝐹), ℝ*, < ) = +∞)
253233, 235, 2523eqtr4d 2774 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
254253rexlimdvaa 3135 . . 3 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∃𝑘 ∈ ℕ ¬ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
255182, 254biimtrrid 243 . 2 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (¬ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
256181, 255pm2.61d 179 1 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296   cuni 4871   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cima 5641  ccom 5642  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  cn 12186  cz 12529  cuz 12793  [,]cicc 13309  ...cfz 13468  ..^cfzo 13615  seqcseq 13966  vol*covol 25363  volcvol 25364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366
This theorem is referenced by:  volsup2  25506  itg1climres  25615  itg2gt0  25661
  Copyright terms: Public domain W3C validator