Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0totbnd Structured version   Visualization version   GIF version

Theorem 0totbnd 37740
Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
0totbnd (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋)))

Proof of Theorem 0totbnd
Dummy variables 𝑣 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . 3 (𝑋 = ∅ → (TotBnd‘𝑋) = (TotBnd‘∅))
21eleq2d 2814 . 2 (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (TotBnd‘∅)))
3 0elpw 5306 . . . . . . 7 ∅ ∈ 𝒫 ∅
4 0fi 8990 . . . . . . 7 ∅ ∈ Fin
5 elin 3927 . . . . . . 7 (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin))
63, 4, 5mpbir2an 711 . . . . . 6 ∅ ∈ (𝒫 ∅ ∩ Fin)
7 0iun 5022 . . . . . 6 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅
8 iuneq1 4968 . . . . . . . 8 (𝑣 = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟))
98eqeq1d 2731 . . . . . . 7 (𝑣 = ∅ → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ ↔ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅))
109rspcev 3585 . . . . . 6 ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅) → ∃𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅)
116, 7, 10mp2an 692 . . . . 5 𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅
1211rgenw 3048 . . . 4 𝑟 ∈ ℝ+𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅
13 istotbnd3 37738 . . . 4 (𝑀 ∈ (TotBnd‘∅) ↔ (𝑀 ∈ (Met‘∅) ∧ ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅))
1412, 13mpbiran2 710 . . 3 (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘∅))
15 fveq2 6840 . . . 4 (𝑋 = ∅ → (Met‘𝑋) = (Met‘∅))
1615eleq2d 2814 . . 3 (𝑋 = ∅ → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (Met‘∅)))
1714, 16bitr4id 290 . 2 (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘𝑋)))
182, 17bitrd 279 1 (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3910  c0 4292  𝒫 cpw 4559   ciun 4951  cfv 6499  (class class class)co 7369  Fincfn 8895  +crp 12927  Metcmet 21226  ballcbl 21227  TotBndctotbnd 37733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-en 8896  df-dom 8897  df-fin 8899  df-totbnd 37735
This theorem is referenced by:  prdsbnd2  37762
  Copyright terms: Public domain W3C validator