Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0totbnd Structured version   Visualization version   GIF version

Theorem 0totbnd 35858
Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
0totbnd (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋)))

Proof of Theorem 0totbnd
Dummy variables 𝑣 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑋 = ∅ → (TotBnd‘𝑋) = (TotBnd‘∅))
21eleq2d 2824 . 2 (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (TotBnd‘∅)))
3 0elpw 5273 . . . . . . 7 ∅ ∈ 𝒫 ∅
4 0fin 8916 . . . . . . 7 ∅ ∈ Fin
5 elin 3899 . . . . . . 7 (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin))
63, 4, 5mpbir2an 707 . . . . . 6 ∅ ∈ (𝒫 ∅ ∩ Fin)
7 0iun 4988 . . . . . 6 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅
8 iuneq1 4937 . . . . . . . 8 (𝑣 = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟))
98eqeq1d 2740 . . . . . . 7 (𝑣 = ∅ → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ ↔ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅))
109rspcev 3552 . . . . . 6 ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅) → ∃𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅)
116, 7, 10mp2an 688 . . . . 5 𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅
1211rgenw 3075 . . . 4 𝑟 ∈ ℝ+𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅
13 istotbnd3 35856 . . . 4 (𝑀 ∈ (TotBnd‘∅) ↔ (𝑀 ∈ (Met‘∅) ∧ ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅))
1412, 13mpbiran2 706 . . 3 (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘∅))
15 fveq2 6756 . . . 4 (𝑋 = ∅ → (Met‘𝑋) = (Met‘∅))
1615eleq2d 2824 . . 3 (𝑋 = ∅ → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (Met‘∅)))
1714, 16bitr4id 289 . 2 (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘𝑋)))
182, 17bitrd 278 1 (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882  c0 4253  𝒫 cpw 4530   ciun 4921  cfv 6418  (class class class)co 7255  Fincfn 8691  +crp 12659  Metcmet 20496  ballcbl 20497  TotBndctotbnd 35851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695  df-totbnd 35853
This theorem is referenced by:  prdsbnd2  35880
  Copyright terms: Public domain W3C validator