Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0totbnd | Structured version Visualization version GIF version |
Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
0totbnd | ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6664 | . . 3 ⊢ (𝑋 = ∅ → (TotBnd‘𝑋) = (TotBnd‘∅)) | |
2 | 1 | eleq2d 2838 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (TotBnd‘∅))) |
3 | 0elpw 5229 | . . . . . . 7 ⊢ ∅ ∈ 𝒫 ∅ | |
4 | 0fin 8754 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
5 | elin 3877 | . . . . . . 7 ⊢ (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)) | |
6 | 3, 4, 5 | mpbir2an 710 | . . . . . 6 ⊢ ∅ ∈ (𝒫 ∅ ∩ Fin) |
7 | 0iun 4955 | . . . . . 6 ⊢ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅ | |
8 | iuneq1 4903 | . . . . . . . 8 ⊢ (𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟)) | |
9 | 8 | eqeq1d 2761 | . . . . . . 7 ⊢ (𝑣 = ∅ → (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ ↔ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅)) |
10 | 9 | rspcev 3544 | . . . . . 6 ⊢ ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅) → ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅) |
11 | 6, 7, 10 | mp2an 691 | . . . . 5 ⊢ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
12 | 11 | rgenw 3083 | . . . 4 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
13 | istotbnd3 35525 | . . . 4 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ (𝑀 ∈ (Met‘∅) ∧ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅)) | |
14 | 12, 13 | mpbiran2 709 | . . 3 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘∅)) |
15 | fveq2 6664 | . . . 4 ⊢ (𝑋 = ∅ → (Met‘𝑋) = (Met‘∅)) | |
16 | 15 | eleq2d 2838 | . . 3 ⊢ (𝑋 = ∅ → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (Met‘∅))) |
17 | 14, 16 | bitr4id 293 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘𝑋))) |
18 | 2, 17 | bitrd 282 | 1 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ∃wrex 3072 ∩ cin 3860 ∅c0 4228 𝒫 cpw 4498 ∪ ciun 4887 ‘cfv 6341 (class class class)co 7157 Fincfn 8541 ℝ+crp 12444 Metcmet 20167 ballcbl 20168 TotBndctotbnd 35520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-ov 7160 df-om 7587 df-1st 7700 df-2nd 7701 df-1o 8119 df-er 8306 df-en 8542 df-dom 8543 df-fin 8545 df-totbnd 35522 |
This theorem is referenced by: prdsbnd2 35549 |
Copyright terms: Public domain | W3C validator |