Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0totbnd Structured version   Visualization version   GIF version

Theorem 0totbnd 37181
Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
0totbnd (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋)))

Proof of Theorem 0totbnd
Dummy variables 𝑣 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . 3 (𝑋 = ∅ → (TotBnd‘𝑋) = (TotBnd‘∅))
21eleq2d 2814 . 2 (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (TotBnd‘∅)))
3 0elpw 5350 . . . . . . 7 ∅ ∈ 𝒫 ∅
4 0fin 9187 . . . . . . 7 ∅ ∈ Fin
5 elin 3960 . . . . . . 7 (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin))
63, 4, 5mpbir2an 710 . . . . . 6 ∅ ∈ (𝒫 ∅ ∩ Fin)
7 0iun 5060 . . . . . 6 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅
8 iuneq1 5007 . . . . . . . 8 (𝑣 = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟))
98eqeq1d 2729 . . . . . . 7 (𝑣 = ∅ → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ ↔ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅))
109rspcev 3607 . . . . . 6 ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅) → ∃𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅)
116, 7, 10mp2an 691 . . . . 5 𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅
1211rgenw 3060 . . . 4 𝑟 ∈ ℝ+𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅
13 istotbnd3 37179 . . . 4 (𝑀 ∈ (TotBnd‘∅) ↔ (𝑀 ∈ (Met‘∅) ∧ ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 ∅ ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑟) = ∅))
1412, 13mpbiran2 709 . . 3 (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘∅))
15 fveq2 6891 . . . 4 (𝑋 = ∅ → (Met‘𝑋) = (Met‘∅))
1615eleq2d 2814 . . 3 (𝑋 = ∅ → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (Met‘∅)))
1714, 16bitr4id 290 . 2 (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘𝑋)))
182, 17bitrd 279 1 (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  wral 3056  wrex 3065  cin 3943  c0 4318  𝒫 cpw 4598   ciun 4991  cfv 6542  (class class class)co 7414  Fincfn 8955  +crp 12998  Metcmet 21252  ballcbl 21253  TotBndctotbnd 37174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-om 7865  df-1st 7987  df-2nd 7988  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-fin 8959  df-totbnd 37176
This theorem is referenced by:  prdsbnd2  37203
  Copyright terms: Public domain W3C validator