| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0totbnd | Structured version Visualization version GIF version | ||
| Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| 0totbnd | ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . 3 ⊢ (𝑋 = ∅ → (TotBnd‘𝑋) = (TotBnd‘∅)) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (TotBnd‘∅))) |
| 3 | 0elpw 5289 | . . . . . . 7 ⊢ ∅ ∈ 𝒫 ∅ | |
| 4 | 0fi 8959 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
| 5 | elin 3913 | . . . . . . 7 ⊢ (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)) | |
| 6 | 3, 4, 5 | mpbir2an 711 | . . . . . 6 ⊢ ∅ ∈ (𝒫 ∅ ∩ Fin) |
| 7 | 0iun 5006 | . . . . . 6 ⊢ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅ | |
| 8 | iuneq1 4953 | . . . . . . . 8 ⊢ (𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟)) | |
| 9 | 8 | eqeq1d 2733 | . . . . . . 7 ⊢ (𝑣 = ∅ → (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ ↔ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅)) |
| 10 | 9 | rspcev 3572 | . . . . . 6 ⊢ ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅) → ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅) |
| 11 | 6, 7, 10 | mp2an 692 | . . . . 5 ⊢ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
| 12 | 11 | rgenw 3051 | . . . 4 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
| 13 | istotbnd3 37811 | . . . 4 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ (𝑀 ∈ (Met‘∅) ∧ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅)) | |
| 14 | 12, 13 | mpbiran2 710 | . . 3 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘∅)) |
| 15 | fveq2 6817 | . . . 4 ⊢ (𝑋 = ∅ → (Met‘𝑋) = (Met‘∅)) | |
| 16 | 15 | eleq2d 2817 | . . 3 ⊢ (𝑋 = ∅ → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (Met‘∅))) |
| 17 | 14, 16 | bitr4id 290 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘𝑋))) |
| 18 | 2, 17 | bitrd 279 | 1 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3896 ∅c0 4278 𝒫 cpw 4545 ∪ ciun 4936 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 ℝ+crp 12885 Metcmet 21272 ballcbl 21273 TotBndctotbnd 37806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-1st 7916 df-2nd 7917 df-1o 8380 df-en 8865 df-dom 8866 df-fin 8868 df-totbnd 37808 |
| This theorem is referenced by: prdsbnd2 37835 |
| Copyright terms: Public domain | W3C validator |