![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0totbnd | Structured version Visualization version GIF version |
Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
0totbnd | ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . 3 ⊢ (𝑋 = ∅ → (TotBnd‘𝑋) = (TotBnd‘∅)) | |
2 | 1 | eleq2d 2825 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (TotBnd‘∅))) |
3 | 0elpw 5362 | . . . . . . 7 ⊢ ∅ ∈ 𝒫 ∅ | |
4 | 0fi 9081 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
5 | elin 3979 | . . . . . . 7 ⊢ (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)) | |
6 | 3, 4, 5 | mpbir2an 711 | . . . . . 6 ⊢ ∅ ∈ (𝒫 ∅ ∩ Fin) |
7 | 0iun 5068 | . . . . . 6 ⊢ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅ | |
8 | iuneq1 5013 | . . . . . . . 8 ⊢ (𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟)) | |
9 | 8 | eqeq1d 2737 | . . . . . . 7 ⊢ (𝑣 = ∅ → (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ ↔ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅)) |
10 | 9 | rspcev 3622 | . . . . . 6 ⊢ ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅) → ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅) |
11 | 6, 7, 10 | mp2an 692 | . . . . 5 ⊢ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
12 | 11 | rgenw 3063 | . . . 4 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
13 | istotbnd3 37758 | . . . 4 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ (𝑀 ∈ (Met‘∅) ∧ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅)) | |
14 | 12, 13 | mpbiran2 710 | . . 3 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘∅)) |
15 | fveq2 6907 | . . . 4 ⊢ (𝑋 = ∅ → (Met‘𝑋) = (Met‘∅)) | |
16 | 15 | eleq2d 2825 | . . 3 ⊢ (𝑋 = ∅ → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (Met‘∅))) |
17 | 14, 16 | bitr4id 290 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘𝑋))) |
18 | 2, 17 | bitrd 279 | 1 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∩ cin 3962 ∅c0 4339 𝒫 cpw 4605 ∪ ciun 4996 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℝ+crp 13032 Metcmet 21368 ballcbl 21369 TotBndctotbnd 37753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-1st 8013 df-2nd 8014 df-1o 8505 df-en 8985 df-dom 8986 df-fin 8988 df-totbnd 37755 |
This theorem is referenced by: prdsbnd2 37782 |
Copyright terms: Public domain | W3C validator |