| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0totbnd | Structured version Visualization version GIF version | ||
| Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| 0totbnd | ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . 3 ⊢ (𝑋 = ∅ → (TotBnd‘𝑋) = (TotBnd‘∅)) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (TotBnd‘∅))) |
| 3 | 0elpw 5298 | . . . . . . 7 ⊢ ∅ ∈ 𝒫 ∅ | |
| 4 | 0fi 8974 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
| 5 | elin 3921 | . . . . . . 7 ⊢ (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)) | |
| 6 | 3, 4, 5 | mpbir2an 711 | . . . . . 6 ⊢ ∅ ∈ (𝒫 ∅ ∩ Fin) |
| 7 | 0iun 5015 | . . . . . 6 ⊢ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅ | |
| 8 | iuneq1 4961 | . . . . . . . 8 ⊢ (𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟)) | |
| 9 | 8 | eqeq1d 2731 | . . . . . . 7 ⊢ (𝑣 = ∅ → (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ ↔ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅)) |
| 10 | 9 | rspcev 3579 | . . . . . 6 ⊢ ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅) → ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅) |
| 11 | 6, 7, 10 | mp2an 692 | . . . . 5 ⊢ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
| 12 | 11 | rgenw 3048 | . . . 4 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
| 13 | istotbnd3 37770 | . . . 4 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ (𝑀 ∈ (Met‘∅) ∧ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅)) | |
| 14 | 12, 13 | mpbiran2 710 | . . 3 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘∅)) |
| 15 | fveq2 6826 | . . . 4 ⊢ (𝑋 = ∅ → (Met‘𝑋) = (Met‘∅)) | |
| 16 | 15 | eleq2d 2814 | . . 3 ⊢ (𝑋 = ∅ → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (Met‘∅))) |
| 17 | 14, 16 | bitr4id 290 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘𝑋))) |
| 18 | 2, 17 | bitrd 279 | 1 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3904 ∅c0 4286 𝒫 cpw 4553 ∪ ciun 4944 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 ℝ+crp 12912 Metcmet 21266 ballcbl 21267 TotBndctotbnd 37765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-1st 7931 df-2nd 7932 df-1o 8395 df-en 8880 df-dom 8881 df-fin 8883 df-totbnd 37767 |
| This theorem is referenced by: prdsbnd2 37794 |
| Copyright terms: Public domain | W3C validator |