![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0totbnd | Structured version Visualization version GIF version |
Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
0totbnd | ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . 3 ⊢ (𝑋 = ∅ → (TotBnd‘𝑋) = (TotBnd‘∅)) | |
2 | 1 | eleq2d 2814 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (TotBnd‘∅))) |
3 | 0elpw 5350 | . . . . . . 7 ⊢ ∅ ∈ 𝒫 ∅ | |
4 | 0fin 9187 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
5 | elin 3960 | . . . . . . 7 ⊢ (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)) | |
6 | 3, 4, 5 | mpbir2an 710 | . . . . . 6 ⊢ ∅ ∈ (𝒫 ∅ ∩ Fin) |
7 | 0iun 5060 | . . . . . 6 ⊢ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅ | |
8 | iuneq1 5007 | . . . . . . . 8 ⊢ (𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟)) | |
9 | 8 | eqeq1d 2729 | . . . . . . 7 ⊢ (𝑣 = ∅ → (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ ↔ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅)) |
10 | 9 | rspcev 3607 | . . . . . 6 ⊢ ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)𝑟) = ∅) → ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅) |
11 | 6, 7, 10 | mp2an 691 | . . . . 5 ⊢ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
12 | 11 | rgenw 3060 | . . . 4 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅ |
13 | istotbnd3 37179 | . . . 4 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ (𝑀 ∈ (Met‘∅) ∧ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 ∅ ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑟) = ∅)) | |
14 | 12, 13 | mpbiran2 709 | . . 3 ⊢ (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘∅)) |
15 | fveq2 6891 | . . . 4 ⊢ (𝑋 = ∅ → (Met‘𝑋) = (Met‘∅)) | |
16 | 15 | eleq2d 2814 | . . 3 ⊢ (𝑋 = ∅ → (𝑀 ∈ (Met‘𝑋) ↔ 𝑀 ∈ (Met‘∅))) |
17 | 14, 16 | bitr4id 290 | . 2 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘∅) ↔ 𝑀 ∈ (Met‘𝑋))) |
18 | 2, 17 | bitrd 279 | 1 ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 ∩ cin 3943 ∅c0 4318 𝒫 cpw 4598 ∪ ciun 4991 ‘cfv 6542 (class class class)co 7414 Fincfn 8955 ℝ+crp 12998 Metcmet 21252 ballcbl 21253 TotBndctotbnd 37174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-1st 7987 df-2nd 7988 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-fin 8959 df-totbnd 37176 |
This theorem is referenced by: prdsbnd2 37203 |
Copyright terms: Public domain | W3C validator |