MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunnul Structured version   Visualization version   GIF version

Theorem ovoliunnul 23796
Description: A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
ovoliunnul ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘ 𝑛𝐴 𝐵) = 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem ovoliunnul
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 4844 . . . . . 6 (𝐴 = ∅ → 𝑛𝐴 𝐵 = 𝑛 ∈ ∅ 𝐵)
2 0iun 4889 . . . . . 6 𝑛 ∈ ∅ 𝐵 = ∅
31, 2syl6eq 2847 . . . . 5 (𝐴 = ∅ → 𝑛𝐴 𝐵 = ∅)
43fveq2d 6547 . . . 4 (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = (vol*‘∅))
5 ovol0 23782 . . . 4 (vol*‘∅) = 0
64, 5syl6eq 2847 . . 3 (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0)
76a1i 11 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0))
8 reldom 8368 . . . . . 6 Rel ≼
98brrelex1i 5499 . . . . 5 (𝐴 ≼ ℕ → 𝐴 ∈ V)
109adantr 481 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → 𝐴 ∈ V)
11 0sdomg 8498 . . . 4 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1210, 11syl 17 . . 3 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴𝐴 ≠ ∅))
13 fodomr 8520 . . . . . 6 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
1413expcom 414 . . . . 5 (𝐴 ≼ ℕ → (∅ ≺ 𝐴 → ∃𝑓 𝑓:ℕ–onto𝐴))
1514adantr 481 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴 → ∃𝑓 𝑓:ℕ–onto𝐴))
16 eliun 4833 . . . . . . . . . 10 (𝑥 𝑛𝐴 𝐵 ↔ ∃𝑛𝐴 𝑥𝐵)
17 nfv 1892 . . . . . . . . . . 11 𝑛 𝑓:ℕ–onto𝐴
18 nfcv 2949 . . . . . . . . . . . . 13 𝑛
19 nfcsb1v 3837 . . . . . . . . . . . . 13 𝑛(𝑓𝑘) / 𝑛𝐵
2018, 19nfiun 4858 . . . . . . . . . . . 12 𝑛 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵
2120nfcri 2943 . . . . . . . . . . 11 𝑛 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵
22 foelrn 6740 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴𝑛𝐴) → ∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘))
2322ex 413 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (𝑛𝐴 → ∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘)))
24 csbeq1a 3828 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑓𝑘) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
2524adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
2625eleq2d 2868 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
2726biimpd 230 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
2827impancom 452 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (𝑛 = (𝑓𝑘) → 𝑥(𝑓𝑘) / 𝑛𝐵))
2928reximdv 3236 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
30 eliun 4833 . . . . . . . . . . . . . . 15 (𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
3129, 30syl6ibr 253 . . . . . . . . . . . . . 14 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3231ex 413 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴 → (𝑥𝐵 → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3332com23 86 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → (𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3423, 33syld 47 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (𝑛𝐴 → (𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3517, 21, 34rexlimd 3278 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 → (∃𝑛𝐴 𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3616, 35syl5bi 243 . . . . . . . . 9 (𝑓:ℕ–onto𝐴 → (𝑥 𝑛𝐴 𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3736ssrdv 3899 . . . . . . . 8 (𝑓:ℕ–onto𝐴 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
3837adantl 482 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
39 fof 6463 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴𝑓:ℕ⟶𝐴)
4039adantl 482 . . . . . . . . . . . 12 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑓:ℕ⟶𝐴)
4140ffvelrnda 6721 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝐴)
42 simpllr 772 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0))
43 nfcv 2949 . . . . . . . . . . . . . 14 𝑛
4419, 43nfss 3886 . . . . . . . . . . . . 13 𝑛(𝑓𝑘) / 𝑛𝐵 ⊆ ℝ
45 nfcv 2949 . . . . . . . . . . . . . . 15 𝑛vol*
4645, 19nffv 6553 . . . . . . . . . . . . . 14 𝑛(vol*‘(𝑓𝑘) / 𝑛𝐵)
4746nfeq1 2962 . . . . . . . . . . . . 13 𝑛(vol*‘(𝑓𝑘) / 𝑛𝐵) = 0
4844, 47nfan 1881 . . . . . . . . . . . 12 𝑛((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
4924sseq1d 3923 . . . . . . . . . . . . 13 (𝑛 = (𝑓𝑘) → (𝐵 ⊆ ℝ ↔ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ))
5024fveqeq2d 6551 . . . . . . . . . . . . 13 (𝑛 = (𝑓𝑘) → ((vol*‘𝐵) = 0 ↔ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0))
5149, 50anbi12d 630 . . . . . . . . . . . 12 (𝑛 = (𝑓𝑘) → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ↔ ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)))
5248, 51rspc 3553 . . . . . . . . . . 11 ((𝑓𝑘) ∈ 𝐴 → (∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)))
5341, 42, 52sylc 65 . . . . . . . . . 10 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0))
5453simpld 495 . . . . . . . . 9 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
5554ralrimiva 3149 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
56 iunss 4872 . . . . . . . 8 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ↔ ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
5755, 56sylibr 235 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
58 eqid 2795 . . . . . . . . . 10 seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)))
59 eqid 2795 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))
6053simprd 496 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
61 0re 10494 . . . . . . . . . . 11 0 ∈ ℝ
6260, 61syl6eqel 2891 . . . . . . . . . 10 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑓𝑘) / 𝑛𝐵) ∈ ℝ)
6360mpteq2dva 5060 . . . . . . . . . . . . 13 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = (𝑘 ∈ ℕ ↦ 0))
64 fconstmpt 5505 . . . . . . . . . . . . . 14 (ℕ × {0}) = (𝑘 ∈ ℕ ↦ 0)
65 nnuz 12135 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6665xpeq1i 5474 . . . . . . . . . . . . . 14 (ℕ × {0}) = ((ℤ‘1) × {0})
6764, 66eqtr3i 2821 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ ↦ 0) = ((ℤ‘1) × {0})
6863, 67syl6eq 2847 . . . . . . . . . . . 12 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = ((ℤ‘1) × {0}))
6968seqeq3d 13232 . . . . . . . . . . 11 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) = seq1( + , ((ℤ‘1) × {0})))
70 1z 11866 . . . . . . . . . . . 12 1 ∈ ℤ
71 serclim0 14773 . . . . . . . . . . . 12 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
72 seqex 13226 . . . . . . . . . . . . 13 seq1( + , ((ℤ‘1) × {0})) ∈ V
73 c0ex 10486 . . . . . . . . . . . . 13 0 ∈ V
7472, 73breldm 5668 . . . . . . . . . . . 12 (seq1( + , ((ℤ‘1) × {0})) ⇝ 0 → seq1( + , ((ℤ‘1) × {0})) ∈ dom ⇝ )
7570, 71, 74mp2b 10 . . . . . . . . . . 11 seq1( + , ((ℤ‘1) × {0})) ∈ dom ⇝
7669, 75syl6eqel 2891 . . . . . . . . . 10 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) ∈ dom ⇝ )
7758, 59, 54, 62, 76ovoliun2 23795 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵))
7860sumeq2dv 14898 . . . . . . . . . 10 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵) = Σ𝑘 ∈ ℕ 0)
7965eqimssi 3950 . . . . . . . . . . . 12 ℕ ⊆ (ℤ‘1)
8079orci 860 . . . . . . . . . . 11 (ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin)
81 sumz 14917 . . . . . . . . . . 11 ((ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin) → Σ𝑘 ∈ ℕ 0 = 0)
8280, 81ax-mp 5 . . . . . . . . . 10 Σ𝑘 ∈ ℕ 0 = 0
8378, 82syl6eq 2847 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
8477, 83breqtrd 4992 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0)
85 ovolge0 23770 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ → 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
8657, 85syl 17 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
87 ovolcl 23767 . . . . . . . . . 10 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ*)
8857, 87syl 17 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ*)
89 0xr 10539 . . . . . . . . 9 0 ∈ ℝ*
90 xrletri3 12402 . . . . . . . . 9 (((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0 ↔ ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))))
9188, 89, 90sylancl 586 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0 ↔ ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))))
9284, 86, 91mpbir2and 709 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0)
93 ovolssnul 23776 . . . . . . 7 (( 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0) → (vol*‘ 𝑛𝐴 𝐵) = 0)
9438, 57, 92, 93syl3anc 1364 . . . . . 6 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑛𝐴 𝐵) = 0)
9594ex 413 . . . . 5 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝑓:ℕ–onto𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9695exlimdv 1911 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∃𝑓 𝑓:ℕ–onto𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9715, 96syld 47 . . 3 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9812, 97sylbird 261 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝐴 ≠ ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0))
997, 98pm2.61dne 3071 1 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘ 𝑛𝐴 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842   = wceq 1522  wex 1761  wcel 2081  wne 2984  wral 3105  wrex 3106  Vcvv 3437  csb 3815  wss 3863  c0 4215  {csn 4476   ciun 4829   class class class wbr 4966  cmpt 5045   × cxp 5446  dom cdm 5448  wf 6226  ontowfo 6228  cfv 6230  cdom 8360  csdm 8361  Fincfn 8362  cr 10387  0cc0 10388  1c1 10389   + caddc 10391  *cxr 10525  cle 10527  cn 11491  cz 11834  cuz 12098  seqcseq 13224  cli 14680  Σcsu 14881  vol*covol 23751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955  ax-cc 9708  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-er 8144  df-map 8263  df-pm 8264  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-sup 8757  df-inf 8758  df-oi 8825  df-dju 9181  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-n0 11751  df-z 11835  df-uz 12099  df-q 12203  df-rp 12245  df-xadd 12363  df-ioo 12597  df-ico 12599  df-icc 12600  df-fz 12748  df-fzo 12889  df-fl 13017  df-seq 13225  df-exp 13285  df-hash 13546  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-clim 14684  df-rlim 14685  df-sum 14882  df-xmet 20225  df-met 20226  df-ovol 23753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator