MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunnul Structured version   Visualization version   GIF version

Theorem ovoliunnul 23565
Description: A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
ovoliunnul ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘ 𝑛𝐴 𝐵) = 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem ovoliunnul
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 4690 . . . . . 6 (𝐴 = ∅ → 𝑛𝐴 𝐵 = 𝑛 ∈ ∅ 𝐵)
2 0iun 4733 . . . . . 6 𝑛 ∈ ∅ 𝐵 = ∅
31, 2syl6eq 2815 . . . . 5 (𝐴 = ∅ → 𝑛𝐴 𝐵 = ∅)
43fveq2d 6379 . . . 4 (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = (vol*‘∅))
5 ovol0 23551 . . . 4 (vol*‘∅) = 0
64, 5syl6eq 2815 . . 3 (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0)
76a1i 11 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0))
8 reldom 8166 . . . . . 6 Rel ≼
98brrelex1i 5328 . . . . 5 (𝐴 ≼ ℕ → 𝐴 ∈ V)
109adantr 472 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → 𝐴 ∈ V)
11 0sdomg 8296 . . . 4 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1210, 11syl 17 . . 3 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴𝐴 ≠ ∅))
13 fodomr 8318 . . . . . 6 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
1413expcom 402 . . . . 5 (𝐴 ≼ ℕ → (∅ ≺ 𝐴 → ∃𝑓 𝑓:ℕ–onto𝐴))
1514adantr 472 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴 → ∃𝑓 𝑓:ℕ–onto𝐴))
16 eliun 4680 . . . . . . . . . 10 (𝑥 𝑛𝐴 𝐵 ↔ ∃𝑛𝐴 𝑥𝐵)
17 nfv 2009 . . . . . . . . . . 11 𝑛 𝑓:ℕ–onto𝐴
18 nfcv 2907 . . . . . . . . . . . . 13 𝑛
19 nfcsb1v 3707 . . . . . . . . . . . . 13 𝑛(𝑓𝑘) / 𝑛𝐵
2018, 19nfiun 4704 . . . . . . . . . . . 12 𝑛 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵
2120nfcri 2901 . . . . . . . . . . 11 𝑛 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵
22 foelrn 6568 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴𝑛𝐴) → ∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘))
2322ex 401 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (𝑛𝐴 → ∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘)))
24 csbeq1a 3700 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑓𝑘) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
2524adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
2625eleq2d 2830 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
2726biimpd 220 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
2827impancom 443 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (𝑛 = (𝑓𝑘) → 𝑥(𝑓𝑘) / 𝑛𝐵))
2928reximdv 3162 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
30 eliun 4680 . . . . . . . . . . . . . . 15 (𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
3129, 30syl6ibr 243 . . . . . . . . . . . . . 14 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3231ex 401 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴 → (𝑥𝐵 → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3332com23 86 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → (𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3423, 33syld 47 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (𝑛𝐴 → (𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3517, 21, 34rexlimd 3173 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 → (∃𝑛𝐴 𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3616, 35syl5bi 233 . . . . . . . . 9 (𝑓:ℕ–onto𝐴 → (𝑥 𝑛𝐴 𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3736ssrdv 3767 . . . . . . . 8 (𝑓:ℕ–onto𝐴 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
3837adantl 473 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
39 fof 6298 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴𝑓:ℕ⟶𝐴)
4039adantl 473 . . . . . . . . . . . 12 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑓:ℕ⟶𝐴)
4140ffvelrnda 6549 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝐴)
42 simpllr 793 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0))
43 nfcv 2907 . . . . . . . . . . . . . 14 𝑛
4419, 43nfss 3754 . . . . . . . . . . . . 13 𝑛(𝑓𝑘) / 𝑛𝐵 ⊆ ℝ
45 nfcv 2907 . . . . . . . . . . . . . . 15 𝑛vol*
4645, 19nffv 6385 . . . . . . . . . . . . . 14 𝑛(vol*‘(𝑓𝑘) / 𝑛𝐵)
4746nfeq1 2921 . . . . . . . . . . . . 13 𝑛(vol*‘(𝑓𝑘) / 𝑛𝐵) = 0
4844, 47nfan 1998 . . . . . . . . . . . 12 𝑛((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
4924sseq1d 3792 . . . . . . . . . . . . 13 (𝑛 = (𝑓𝑘) → (𝐵 ⊆ ℝ ↔ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ))
5024fveqeq2d 6383 . . . . . . . . . . . . 13 (𝑛 = (𝑓𝑘) → ((vol*‘𝐵) = 0 ↔ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0))
5149, 50anbi12d 624 . . . . . . . . . . . 12 (𝑛 = (𝑓𝑘) → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ↔ ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)))
5248, 51rspc 3455 . . . . . . . . . . 11 ((𝑓𝑘) ∈ 𝐴 → (∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)))
5341, 42, 52sylc 65 . . . . . . . . . 10 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0))
5453simpld 488 . . . . . . . . 9 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
5554ralrimiva 3113 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
56 iunss 4717 . . . . . . . 8 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ↔ ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
5755, 56sylibr 225 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
58 eqid 2765 . . . . . . . . . 10 seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)))
59 eqid 2765 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))
6053simprd 489 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
61 0re 10295 . . . . . . . . . . 11 0 ∈ ℝ
6260, 61syl6eqel 2852 . . . . . . . . . 10 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑓𝑘) / 𝑛𝐵) ∈ ℝ)
6360mpteq2dva 4903 . . . . . . . . . . . . 13 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = (𝑘 ∈ ℕ ↦ 0))
64 fconstmpt 5333 . . . . . . . . . . . . . 14 (ℕ × {0}) = (𝑘 ∈ ℕ ↦ 0)
65 nnuz 11923 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6665xpeq1i 5303 . . . . . . . . . . . . . 14 (ℕ × {0}) = ((ℤ‘1) × {0})
6764, 66eqtr3i 2789 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ ↦ 0) = ((ℤ‘1) × {0})
6863, 67syl6eq 2815 . . . . . . . . . . . 12 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = ((ℤ‘1) × {0}))
6968seqeq3d 13016 . . . . . . . . . . 11 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) = seq1( + , ((ℤ‘1) × {0})))
70 1z 11654 . . . . . . . . . . . 12 1 ∈ ℤ
71 serclim0 14593 . . . . . . . . . . . 12 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
72 seqex 13010 . . . . . . . . . . . . 13 seq1( + , ((ℤ‘1) × {0})) ∈ V
73 c0ex 10287 . . . . . . . . . . . . 13 0 ∈ V
7472, 73breldm 5497 . . . . . . . . . . . 12 (seq1( + , ((ℤ‘1) × {0})) ⇝ 0 → seq1( + , ((ℤ‘1) × {0})) ∈ dom ⇝ )
7570, 71, 74mp2b 10 . . . . . . . . . . 11 seq1( + , ((ℤ‘1) × {0})) ∈ dom ⇝
7669, 75syl6eqel 2852 . . . . . . . . . 10 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) ∈ dom ⇝ )
7758, 59, 54, 62, 76ovoliun2 23564 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵))
7860sumeq2dv 14718 . . . . . . . . . 10 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵) = Σ𝑘 ∈ ℕ 0)
7965eqimssi 3819 . . . . . . . . . . . 12 ℕ ⊆ (ℤ‘1)
8079orci 891 . . . . . . . . . . 11 (ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin)
81 sumz 14738 . . . . . . . . . . 11 ((ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin) → Σ𝑘 ∈ ℕ 0 = 0)
8280, 81ax-mp 5 . . . . . . . . . 10 Σ𝑘 ∈ ℕ 0 = 0
8378, 82syl6eq 2815 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
8477, 83breqtrd 4835 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0)
85 ovolge0 23539 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ → 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
8657, 85syl 17 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
87 ovolcl 23536 . . . . . . . . . 10 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ*)
8857, 87syl 17 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ*)
89 0xr 10340 . . . . . . . . 9 0 ∈ ℝ*
90 xrletri3 12187 . . . . . . . . 9 (((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0 ↔ ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))))
9188, 89, 90sylancl 580 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0 ↔ ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))))
9284, 86, 91mpbir2and 704 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0)
93 ovolssnul 23545 . . . . . . 7 (( 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0) → (vol*‘ 𝑛𝐴 𝐵) = 0)
9438, 57, 92, 93syl3anc 1490 . . . . . 6 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑛𝐴 𝐵) = 0)
9594ex 401 . . . . 5 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝑓:ℕ–onto𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9695exlimdv 2028 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∃𝑓 𝑓:ℕ–onto𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9715, 96syld 47 . . 3 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9812, 97sylbird 251 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝐴 ≠ ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0))
997, 98pm2.61dne 3023 1 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘ 𝑛𝐴 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  Vcvv 3350  csb 3691  wss 3732  c0 4079  {csn 4334   ciun 4676   class class class wbr 4809  cmpt 4888   × cxp 5275  dom cdm 5277  wf 6064  ontowfo 6066  cfv 6068  cdom 8158  csdm 8159  Fincfn 8160  cr 10188  0cc0 10189  1c1 10190   + caddc 10192  *cxr 10327  cle 10329  cn 11274  cz 11624  cuz 11886  seqcseq 13008  cli 14500  Σcsu 14701  vol*covol 23520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xadd 12147  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-rlim 14505  df-sum 14702  df-xmet 20012  df-met 20013  df-ovol 23522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator