MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunnul Structured version   Visualization version   GIF version

Theorem ovoliunnul 25441
Description: A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
ovoliunnul ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘ 𝑛𝐴 𝐵) = 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem ovoliunnul
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 4968 . . . . . 6 (𝐴 = ∅ → 𝑛𝐴 𝐵 = 𝑛 ∈ ∅ 𝐵)
2 0iun 5022 . . . . . 6 𝑛 ∈ ∅ 𝐵 = ∅
31, 2eqtrdi 2780 . . . . 5 (𝐴 = ∅ → 𝑛𝐴 𝐵 = ∅)
43fveq2d 6844 . . . 4 (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = (vol*‘∅))
5 ovol0 25427 . . . 4 (vol*‘∅) = 0
64, 5eqtrdi 2780 . . 3 (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0)
76a1i 11 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0))
8 reldom 8901 . . . . . 6 Rel ≼
98brrelex1i 5687 . . . . 5 (𝐴 ≼ ℕ → 𝐴 ∈ V)
109adantr 480 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → 𝐴 ∈ V)
11 0sdomg 9047 . . . 4 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1210, 11syl 17 . . 3 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴𝐴 ≠ ∅))
13 fodomr 9069 . . . . . 6 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
1413expcom 413 . . . . 5 (𝐴 ≼ ℕ → (∅ ≺ 𝐴 → ∃𝑓 𝑓:ℕ–onto𝐴))
1514adantr 480 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴 → ∃𝑓 𝑓:ℕ–onto𝐴))
16 eliun 4955 . . . . . . . . . 10 (𝑥 𝑛𝐴 𝐵 ↔ ∃𝑛𝐴 𝑥𝐵)
17 nfv 1914 . . . . . . . . . . 11 𝑛 𝑓:ℕ–onto𝐴
18 nfcv 2891 . . . . . . . . . . . . 13 𝑛
19 nfcsb1v 3883 . . . . . . . . . . . . 13 𝑛(𝑓𝑘) / 𝑛𝐵
2018, 19nfiun 4983 . . . . . . . . . . . 12 𝑛 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵
2120nfcri 2883 . . . . . . . . . . 11 𝑛 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵
22 foelrn 7061 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴𝑛𝐴) → ∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘))
2322ex 412 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (𝑛𝐴 → ∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘)))
24 csbeq1a 3873 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑓𝑘) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
2524adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
2625eleq2d 2814 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
2726biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
2827impancom 451 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (𝑛 = (𝑓𝑘) → 𝑥(𝑓𝑘) / 𝑛𝐵))
2928reximdv 3148 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
30 eliun 4955 . . . . . . . . . . . . . . 15 (𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
3129, 30imbitrrdi 252 . . . . . . . . . . . . . 14 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3231ex 412 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴 → (𝑥𝐵 → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3332com23 86 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → (𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3423, 33syld 47 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (𝑛𝐴 → (𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3517, 21, 34rexlimd 3242 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 → (∃𝑛𝐴 𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3616, 35biimtrid 242 . . . . . . . . 9 (𝑓:ℕ–onto𝐴 → (𝑥 𝑛𝐴 𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3736ssrdv 3949 . . . . . . . 8 (𝑓:ℕ–onto𝐴 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
3837adantl 481 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
39 fof 6754 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴𝑓:ℕ⟶𝐴)
4039adantl 481 . . . . . . . . . . . 12 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑓:ℕ⟶𝐴)
4140ffvelcdmda 7038 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝐴)
42 simpllr 775 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0))
43 nfcv 2891 . . . . . . . . . . . . . 14 𝑛
4419, 43nfss 3936 . . . . . . . . . . . . 13 𝑛(𝑓𝑘) / 𝑛𝐵 ⊆ ℝ
45 nfcv 2891 . . . . . . . . . . . . . . 15 𝑛vol*
4645, 19nffv 6850 . . . . . . . . . . . . . 14 𝑛(vol*‘(𝑓𝑘) / 𝑛𝐵)
4746nfeq1 2907 . . . . . . . . . . . . 13 𝑛(vol*‘(𝑓𝑘) / 𝑛𝐵) = 0
4844, 47nfan 1899 . . . . . . . . . . . 12 𝑛((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
4924sseq1d 3975 . . . . . . . . . . . . 13 (𝑛 = (𝑓𝑘) → (𝐵 ⊆ ℝ ↔ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ))
5024fveqeq2d 6848 . . . . . . . . . . . . 13 (𝑛 = (𝑓𝑘) → ((vol*‘𝐵) = 0 ↔ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0))
5149, 50anbi12d 632 . . . . . . . . . . . 12 (𝑛 = (𝑓𝑘) → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ↔ ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)))
5248, 51rspc 3573 . . . . . . . . . . 11 ((𝑓𝑘) ∈ 𝐴 → (∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)))
5341, 42, 52sylc 65 . . . . . . . . . 10 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0))
5453simpld 494 . . . . . . . . 9 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
5554ralrimiva 3125 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
56 iunss 5004 . . . . . . . 8 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ↔ ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
5755, 56sylibr 234 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
58 eqid 2729 . . . . . . . . . 10 seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)))
59 eqid 2729 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))
6053simprd 495 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
61 0re 11152 . . . . . . . . . . 11 0 ∈ ℝ
6260, 61eqeltrdi 2836 . . . . . . . . . 10 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑓𝑘) / 𝑛𝐵) ∈ ℝ)
6360mpteq2dva 5195 . . . . . . . . . . . . 13 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = (𝑘 ∈ ℕ ↦ 0))
64 fconstmpt 5693 . . . . . . . . . . . . . 14 (ℕ × {0}) = (𝑘 ∈ ℕ ↦ 0)
65 nnuz 12812 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6665xpeq1i 5657 . . . . . . . . . . . . . 14 (ℕ × {0}) = ((ℤ‘1) × {0})
6764, 66eqtr3i 2754 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ ↦ 0) = ((ℤ‘1) × {0})
6863, 67eqtrdi 2780 . . . . . . . . . . . 12 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = ((ℤ‘1) × {0}))
6968seqeq3d 13950 . . . . . . . . . . 11 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) = seq1( + , ((ℤ‘1) × {0})))
70 1z 12539 . . . . . . . . . . . 12 1 ∈ ℤ
71 serclim0 15519 . . . . . . . . . . . 12 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
72 seqex 13944 . . . . . . . . . . . . 13 seq1( + , ((ℤ‘1) × {0})) ∈ V
73 c0ex 11144 . . . . . . . . . . . . 13 0 ∈ V
7472, 73breldm 5862 . . . . . . . . . . . 12 (seq1( + , ((ℤ‘1) × {0})) ⇝ 0 → seq1( + , ((ℤ‘1) × {0})) ∈ dom ⇝ )
7570, 71, 74mp2b 10 . . . . . . . . . . 11 seq1( + , ((ℤ‘1) × {0})) ∈ dom ⇝
7669, 75eqeltrdi 2836 . . . . . . . . . 10 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) ∈ dom ⇝ )
7758, 59, 54, 62, 76ovoliun2 25440 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵))
7860sumeq2dv 15644 . . . . . . . . . 10 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵) = Σ𝑘 ∈ ℕ 0)
7965eqimssi 4004 . . . . . . . . . . . 12 ℕ ⊆ (ℤ‘1)
8079orci 865 . . . . . . . . . . 11 (ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin)
81 sumz 15664 . . . . . . . . . . 11 ((ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin) → Σ𝑘 ∈ ℕ 0 = 0)
8280, 81ax-mp 5 . . . . . . . . . 10 Σ𝑘 ∈ ℕ 0 = 0
8378, 82eqtrdi 2780 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
8477, 83breqtrd 5128 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0)
85 ovolge0 25415 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ → 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
8657, 85syl 17 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
87 ovolcl 25412 . . . . . . . . . 10 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ*)
8857, 87syl 17 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ*)
89 0xr 11197 . . . . . . . . 9 0 ∈ ℝ*
90 xrletri3 13090 . . . . . . . . 9 (((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0 ↔ ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))))
9188, 89, 90sylancl 586 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0 ↔ ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))))
9284, 86, 91mpbir2and 713 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0)
93 ovolssnul 25421 . . . . . . 7 (( 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0) → (vol*‘ 𝑛𝐴 𝐵) = 0)
9438, 57, 92, 93syl3anc 1373 . . . . . 6 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑛𝐴 𝐵) = 0)
9594ex 412 . . . . 5 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝑓:ℕ–onto𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9695exlimdv 1933 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∃𝑓 𝑓:ℕ–onto𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9715, 96syld 47 . . 3 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9812, 97sylbird 260 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝐴 ≠ ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0))
997, 98pm2.61dne 3011 1 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘ 𝑛𝐴 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  csb 3859  wss 3911  c0 4292  {csn 4585   ciun 4951   class class class wbr 5102  cmpt 5183   × cxp 5629  dom cdm 5631  wf 6495  ontowfo 6497  cfv 6499  cdom 8893  csdm 8894  Fincfn 8895  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  *cxr 11183  cle 11185  cn 12162  cz 12505  cuz 12769  seqcseq 13942  cli 15426  Σcsu 15628  vol*covol 25396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xadd 13049  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-xmet 21289  df-met 21290  df-ovol 25398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator