MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunnul Structured version   Visualization version   GIF version

Theorem ovoliunnul 25024
Description: A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
ovoliunnul ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘ 𝑛𝐴 𝐵) = 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem ovoliunnul
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 5014 . . . . . 6 (𝐴 = ∅ → 𝑛𝐴 𝐵 = 𝑛 ∈ ∅ 𝐵)
2 0iun 5067 . . . . . 6 𝑛 ∈ ∅ 𝐵 = ∅
31, 2eqtrdi 2789 . . . . 5 (𝐴 = ∅ → 𝑛𝐴 𝐵 = ∅)
43fveq2d 6896 . . . 4 (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = (vol*‘∅))
5 ovol0 25010 . . . 4 (vol*‘∅) = 0
64, 5eqtrdi 2789 . . 3 (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0)
76a1i 11 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝐴 = ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0))
8 reldom 8945 . . . . . 6 Rel ≼
98brrelex1i 5733 . . . . 5 (𝐴 ≼ ℕ → 𝐴 ∈ V)
109adantr 482 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → 𝐴 ∈ V)
11 0sdomg 9104 . . . 4 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1210, 11syl 17 . . 3 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴𝐴 ≠ ∅))
13 fodomr 9128 . . . . . 6 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
1413expcom 415 . . . . 5 (𝐴 ≼ ℕ → (∅ ≺ 𝐴 → ∃𝑓 𝑓:ℕ–onto𝐴))
1514adantr 482 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴 → ∃𝑓 𝑓:ℕ–onto𝐴))
16 eliun 5002 . . . . . . . . . 10 (𝑥 𝑛𝐴 𝐵 ↔ ∃𝑛𝐴 𝑥𝐵)
17 nfv 1918 . . . . . . . . . . 11 𝑛 𝑓:ℕ–onto𝐴
18 nfcv 2904 . . . . . . . . . . . . 13 𝑛
19 nfcsb1v 3919 . . . . . . . . . . . . 13 𝑛(𝑓𝑘) / 𝑛𝐵
2018, 19nfiun 5028 . . . . . . . . . . . 12 𝑛 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵
2120nfcri 2891 . . . . . . . . . . 11 𝑛 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵
22 foelrn 7108 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴𝑛𝐴) → ∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘))
2322ex 414 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (𝑛𝐴 → ∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘)))
24 csbeq1a 3908 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑓𝑘) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
2524adantl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
2625eleq2d 2820 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
2726biimpd 228 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–onto𝐴𝑛 = (𝑓𝑘)) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
2827impancom 453 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (𝑛 = (𝑓𝑘) → 𝑥(𝑓𝑘) / 𝑛𝐵))
2928reximdv 3171 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
30 eliun 5002 . . . . . . . . . . . . . . 15 (𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
3129, 30imbitrrdi 251 . . . . . . . . . . . . . 14 ((𝑓:ℕ–onto𝐴𝑥𝐵) → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3231ex 414 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴 → (𝑥𝐵 → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → 𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3332com23 86 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∃𝑘 ∈ ℕ 𝑛 = (𝑓𝑘) → (𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3423, 33syld 47 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (𝑛𝐴 → (𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)))
3517, 21, 34rexlimd 3264 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 → (∃𝑛𝐴 𝑥𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3616, 35biimtrid 241 . . . . . . . . 9 (𝑓:ℕ–onto𝐴 → (𝑥 𝑛𝐴 𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
3736ssrdv 3989 . . . . . . . 8 (𝑓:ℕ–onto𝐴 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
3837adantl 483 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
39 fof 6806 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴𝑓:ℕ⟶𝐴)
4039adantl 483 . . . . . . . . . . . 12 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑓:ℕ⟶𝐴)
4140ffvelcdmda 7087 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝐴)
42 simpllr 775 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0))
43 nfcv 2904 . . . . . . . . . . . . . 14 𝑛
4419, 43nfss 3975 . . . . . . . . . . . . 13 𝑛(𝑓𝑘) / 𝑛𝐵 ⊆ ℝ
45 nfcv 2904 . . . . . . . . . . . . . . 15 𝑛vol*
4645, 19nffv 6902 . . . . . . . . . . . . . 14 𝑛(vol*‘(𝑓𝑘) / 𝑛𝐵)
4746nfeq1 2919 . . . . . . . . . . . . 13 𝑛(vol*‘(𝑓𝑘) / 𝑛𝐵) = 0
4844, 47nfan 1903 . . . . . . . . . . . 12 𝑛((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
4924sseq1d 4014 . . . . . . . . . . . . 13 (𝑛 = (𝑓𝑘) → (𝐵 ⊆ ℝ ↔ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ))
5024fveqeq2d 6900 . . . . . . . . . . . . 13 (𝑛 = (𝑓𝑘) → ((vol*‘𝐵) = 0 ↔ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0))
5149, 50anbi12d 632 . . . . . . . . . . . 12 (𝑛 = (𝑓𝑘) → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ↔ ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)))
5248, 51rspc 3601 . . . . . . . . . . 11 ((𝑓𝑘) ∈ 𝐴 → (∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)))
5341, 42, 52sylc 65 . . . . . . . . . 10 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0))
5453simpld 496 . . . . . . . . 9 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
5554ralrimiva 3147 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
56 iunss 5049 . . . . . . . 8 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ↔ ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
5755, 56sylibr 233 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ)
58 eqid 2733 . . . . . . . . . 10 seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)))
59 eqid 2733 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))
6053simprd 497 . . . . . . . . . . 11 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
61 0re 11216 . . . . . . . . . . 11 0 ∈ ℝ
6260, 61eqeltrdi 2842 . . . . . . . . . 10 ((((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑓𝑘) / 𝑛𝐵) ∈ ℝ)
6360mpteq2dva 5249 . . . . . . . . . . . . 13 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = (𝑘 ∈ ℕ ↦ 0))
64 fconstmpt 5739 . . . . . . . . . . . . . 14 (ℕ × {0}) = (𝑘 ∈ ℕ ↦ 0)
65 nnuz 12865 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6665xpeq1i 5703 . . . . . . . . . . . . . 14 (ℕ × {0}) = ((ℤ‘1) × {0})
6764, 66eqtr3i 2763 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ ↦ 0) = ((ℤ‘1) × {0})
6863, 67eqtrdi 2789 . . . . . . . . . . . 12 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵)) = ((ℤ‘1) × {0}))
6968seqeq3d 13974 . . . . . . . . . . 11 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) = seq1( + , ((ℤ‘1) × {0})))
70 1z 12592 . . . . . . . . . . . 12 1 ∈ ℤ
71 serclim0 15521 . . . . . . . . . . . 12 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
72 seqex 13968 . . . . . . . . . . . . 13 seq1( + , ((ℤ‘1) × {0})) ∈ V
73 c0ex 11208 . . . . . . . . . . . . 13 0 ∈ V
7472, 73breldm 5909 . . . . . . . . . . . 12 (seq1( + , ((ℤ‘1) × {0})) ⇝ 0 → seq1( + , ((ℤ‘1) × {0})) ∈ dom ⇝ )
7570, 71, 74mp2b 10 . . . . . . . . . . 11 seq1( + , ((ℤ‘1) × {0})) ∈ dom ⇝
7669, 75eqeltrdi 2842 . . . . . . . . . 10 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → seq1( + , (𝑘 ∈ ℕ ↦ (vol*‘(𝑓𝑘) / 𝑛𝐵))) ∈ dom ⇝ )
7758, 59, 54, 62, 76ovoliun2 25023 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵))
7860sumeq2dv 15649 . . . . . . . . . 10 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵) = Σ𝑘 ∈ ℕ 0)
7965eqimssi 4043 . . . . . . . . . . . 12 ℕ ⊆ (ℤ‘1)
8079orci 864 . . . . . . . . . . 11 (ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin)
81 sumz 15668 . . . . . . . . . . 11 ((ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin) → Σ𝑘 ∈ ℕ 0 = 0)
8280, 81ax-mp 5 . . . . . . . . . 10 Σ𝑘 ∈ ℕ 0 = 0
8378, 82eqtrdi 2789 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → Σ𝑘 ∈ ℕ (vol*‘(𝑓𝑘) / 𝑛𝐵) = 0)
8477, 83breqtrd 5175 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0)
85 ovolge0 24998 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ → 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
8657, 85syl 17 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
87 ovolcl 24995 . . . . . . . . . 10 ( 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ*)
8857, 87syl 17 . . . . . . . . 9 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ*)
89 0xr 11261 . . . . . . . . 9 0 ∈ ℝ*
90 xrletri3 13133 . . . . . . . . 9 (((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0 ↔ ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))))
9188, 89, 90sylancl 587 . . . . . . . 8 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0 ↔ ((vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))))
9284, 86, 91mpbir2and 712 . . . . . . 7 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0)
93 ovolssnul 25004 . . . . . . 7 (( 𝑛𝐴 𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ⊆ ℝ ∧ (vol*‘ 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵) = 0) → (vol*‘ 𝑛𝐴 𝐵) = 0)
9438, 57, 92, 93syl3anc 1372 . . . . . 6 (((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) ∧ 𝑓:ℕ–onto𝐴) → (vol*‘ 𝑛𝐴 𝐵) = 0)
9594ex 414 . . . . 5 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝑓:ℕ–onto𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9695exlimdv 1937 . . . 4 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∃𝑓 𝑓:ℕ–onto𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9715, 96syld 47 . . 3 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (∅ ≺ 𝐴 → (vol*‘ 𝑛𝐴 𝐵) = 0))
9812, 97sylbird 260 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (𝐴 ≠ ∅ → (vol*‘ 𝑛𝐴 𝐵) = 0))
997, 98pm2.61dne 3029 1 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘ 𝑛𝐴 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  csb 3894  wss 3949  c0 4323  {csn 4629   ciun 4998   class class class wbr 5149  cmpt 5232   × cxp 5675  dom cdm 5677  wf 6540  ontowfo 6542  cfv 6544  cdom 8937  csdm 8938  Fincfn 8939  cr 11109  0cc0 11110  1c1 11111   + caddc 11113  *cxr 11247  cle 11249  cn 12212  cz 12558  cuz 12822  seqcseq 13966  cli 15428  Σcsu 15632  vol*covol 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cc 10430  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-xadd 13093  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-xmet 20937  df-met 20938  df-ovol 24981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator