Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenfiiuncl Structured version   Visualization version   GIF version

Theorem caragenfiiuncl 42228
Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenfiiuncl.kph 𝑘𝜑
caragenfiiuncl.o (𝜑𝑂 ∈ OutMeas)
caragenfiiuncl.s 𝑆 = (CaraGen‘𝑂)
caragenfiiuncl.a (𝜑𝐴 ∈ Fin)
caragenfiiuncl.b ((𝜑𝑘𝐴) → 𝐵𝑆)
Assertion
Ref Expression
caragenfiiuncl (𝜑 𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑂(𝑘)

Proof of Theorem caragenfiiuncl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 4801 . . . . 5 (𝐴 = ∅ → 𝑘𝐴 𝐵 = 𝑘 ∈ ∅ 𝐵)
2 0iun 4846 . . . . . 6 𝑘 ∈ ∅ 𝐵 = ∅
32a1i 11 . . . . 5 (𝐴 = ∅ → 𝑘 ∈ ∅ 𝐵 = ∅)
41, 3eqtrd 2808 . . . 4 (𝐴 = ∅ → 𝑘𝐴 𝐵 = ∅)
54adantl 474 . . 3 ((𝜑𝐴 = ∅) → 𝑘𝐴 𝐵 = ∅)
6 caragenfiiuncl.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
7 caragenfiiuncl.s . . . . 5 𝑆 = (CaraGen‘𝑂)
86, 7caragen0 42219 . . . 4 (𝜑 → ∅ ∈ 𝑆)
98adantr 473 . . 3 ((𝜑𝐴 = ∅) → ∅ ∈ 𝑆)
105, 9eqeltrd 2860 . 2 ((𝜑𝐴 = ∅) → 𝑘𝐴 𝐵𝑆)
11 simpl 475 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑)
12 neqne 2969 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
1312adantl 474 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
14 caragenfiiuncl.kph . . . . 5 𝑘𝜑
15 nfv 1873 . . . . 5 𝑘 𝐴 ≠ ∅
1614, 15nfan 1862 . . . 4 𝑘(𝜑𝐴 ≠ ∅)
17 caragenfiiuncl.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑆)
1817adantlr 702 . . . 4 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝐵𝑆)
1963ad2ant1 1113 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑂 ∈ OutMeas)
20 simp2 1117 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑥𝑆)
21 simp3 1118 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑦𝑆)
2219, 7, 20, 21caragenuncl 42226 . . . . 5 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
23223adant1r 1157 . . . 4 (((𝜑𝐴 ≠ ∅) ∧ 𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
24 caragenfiiuncl.a . . . . 5 (𝜑𝐴 ∈ Fin)
2524adantr 473 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
26 simpr 477 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2716, 18, 23, 25, 26fiiuncl 40746 . . 3 ((𝜑𝐴 ≠ ∅) → 𝑘𝐴 𝐵𝑆)
2811, 13, 27syl2anc 576 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑘𝐴 𝐵𝑆)
2910, 28pm2.61dan 800 1 (𝜑 𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wnf 1746  wcel 2050  wne 2961  cun 3821  c0 4172   ciun 4786  cfv 6182  Fincfn 8300  OutMeascome 42202  CaraGenccaragen 42204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-1o 7899  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-xadd 12319  df-icc 12555  df-ome 42203  df-caragen 42205
This theorem is referenced by:  carageniuncllem1  42234  carageniuncllem2  42235
  Copyright terms: Public domain W3C validator