| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenfiiuncl | Structured version Visualization version GIF version | ||
| Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenfiiuncl.kph | ⊢ Ⅎ𝑘𝜑 |
| caragenfiiuncl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragenfiiuncl.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| caragenfiiuncl.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| caragenfiiuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caragenfiiuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1 4968 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) | |
| 2 | 0iun 5022 | . . . . . 6 ⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ ∅ 𝐵 = ∅) |
| 4 | 1, 3 | eqtrd 2764 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅) |
| 6 | caragenfiiuncl.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 7 | caragenfiiuncl.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 8 | 6, 7 | caragen0 46497 | . . . 4 ⊢ (𝜑 → ∅ ∈ 𝑆) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∅ ∈ 𝑆) |
| 10 | 5, 9 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 11 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑) | |
| 12 | neqne 2933 | . . . 4 ⊢ (¬ 𝐴 = ∅ → 𝐴 ≠ ∅) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
| 14 | caragenfiiuncl.kph | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 15 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝐴 ≠ ∅ | |
| 16 | 14, 15 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐴 ≠ ∅) |
| 17 | caragenfiiuncl.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
| 18 | 17 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| 19 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑂 ∈ OutMeas) |
| 20 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 21 | simp3 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 22 | 19, 7, 20, 21 | caragenuncl 46504 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∪ 𝑦) ∈ 𝑆) |
| 23 | 22 | 3adant1r 1178 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∪ 𝑦) ∈ 𝑆) |
| 24 | caragenfiiuncl.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 25 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
| 26 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 27 | 16, 18, 23, 25, 26 | fiiuncl 45052 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 28 | 11, 13, 27 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 29 | 10, 28 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 ∪ cun 3909 ∅c0 4292 ∪ ciun 4951 ‘cfv 6499 Fincfn 8895 OutMeascome 46480 CaraGenccaragen 46482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-xadd 13049 df-icc 13289 df-ome 46481 df-caragen 46483 |
| This theorem is referenced by: carageniuncllem1 46512 carageniuncllem2 46513 |
| Copyright terms: Public domain | W3C validator |