| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenfiiuncl | Structured version Visualization version GIF version | ||
| Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenfiiuncl.kph | ⊢ Ⅎ𝑘𝜑 |
| caragenfiiuncl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragenfiiuncl.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| caragenfiiuncl.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| caragenfiiuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caragenfiiuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1 4975 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) | |
| 2 | 0iun 5030 | . . . . . 6 ⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ ∅ 𝐵 = ∅) |
| 4 | 1, 3 | eqtrd 2765 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅) |
| 6 | caragenfiiuncl.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 7 | caragenfiiuncl.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 8 | 6, 7 | caragen0 46511 | . . . 4 ⊢ (𝜑 → ∅ ∈ 𝑆) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∅ ∈ 𝑆) |
| 10 | 5, 9 | eqeltrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 11 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑) | |
| 12 | neqne 2934 | . . . 4 ⊢ (¬ 𝐴 = ∅ → 𝐴 ≠ ∅) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
| 14 | caragenfiiuncl.kph | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 15 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝐴 ≠ ∅ | |
| 16 | 14, 15 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐴 ≠ ∅) |
| 17 | caragenfiiuncl.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
| 18 | 17 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| 19 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑂 ∈ OutMeas) |
| 20 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 21 | simp3 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 22 | 19, 7, 20, 21 | caragenuncl 46518 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∪ 𝑦) ∈ 𝑆) |
| 23 | 22 | 3adant1r 1178 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∪ 𝑦) ∈ 𝑆) |
| 24 | caragenfiiuncl.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 25 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
| 26 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 27 | 16, 18, 23, 25, 26 | fiiuncl 45066 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 28 | 11, 13, 27 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 29 | 10, 28 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2926 ∪ cun 3915 ∅c0 4299 ∪ ciun 4958 ‘cfv 6514 Fincfn 8921 OutMeascome 46494 CaraGenccaragen 46496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-xadd 13080 df-icc 13320 df-ome 46495 df-caragen 46497 |
| This theorem is referenced by: carageniuncllem1 46526 carageniuncllem2 46527 |
| Copyright terms: Public domain | W3C validator |