Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenfiiuncl Structured version   Visualization version   GIF version

Theorem caragenfiiuncl 46436
Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenfiiuncl.kph 𝑘𝜑
caragenfiiuncl.o (𝜑𝑂 ∈ OutMeas)
caragenfiiuncl.s 𝑆 = (CaraGen‘𝑂)
caragenfiiuncl.a (𝜑𝐴 ∈ Fin)
caragenfiiuncl.b ((𝜑𝑘𝐴) → 𝐵𝑆)
Assertion
Ref Expression
caragenfiiuncl (𝜑 𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑂(𝑘)

Proof of Theorem caragenfiiuncl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 5031 . . . . 5 (𝐴 = ∅ → 𝑘𝐴 𝐵 = 𝑘 ∈ ∅ 𝐵)
2 0iun 5086 . . . . . 6 𝑘 ∈ ∅ 𝐵 = ∅
32a1i 11 . . . . 5 (𝐴 = ∅ → 𝑘 ∈ ∅ 𝐵 = ∅)
41, 3eqtrd 2780 . . . 4 (𝐴 = ∅ → 𝑘𝐴 𝐵 = ∅)
54adantl 481 . . 3 ((𝜑𝐴 = ∅) → 𝑘𝐴 𝐵 = ∅)
6 caragenfiiuncl.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
7 caragenfiiuncl.s . . . . 5 𝑆 = (CaraGen‘𝑂)
86, 7caragen0 46427 . . . 4 (𝜑 → ∅ ∈ 𝑆)
98adantr 480 . . 3 ((𝜑𝐴 = ∅) → ∅ ∈ 𝑆)
105, 9eqeltrd 2844 . 2 ((𝜑𝐴 = ∅) → 𝑘𝐴 𝐵𝑆)
11 simpl 482 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑)
12 neqne 2954 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
1312adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
14 caragenfiiuncl.kph . . . . 5 𝑘𝜑
15 nfv 1913 . . . . 5 𝑘 𝐴 ≠ ∅
1614, 15nfan 1898 . . . 4 𝑘(𝜑𝐴 ≠ ∅)
17 caragenfiiuncl.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑆)
1817adantlr 714 . . . 4 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝐵𝑆)
1963ad2ant1 1133 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑂 ∈ OutMeas)
20 simp2 1137 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑥𝑆)
21 simp3 1138 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑦𝑆)
2219, 7, 20, 21caragenuncl 46434 . . . . 5 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
23223adant1r 1177 . . . 4 (((𝜑𝐴 ≠ ∅) ∧ 𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
24 caragenfiiuncl.a . . . . 5 (𝜑𝐴 ∈ Fin)
2524adantr 480 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
26 simpr 484 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2716, 18, 23, 25, 26fiiuncl 44967 . . 3 ((𝜑𝐴 ≠ ∅) → 𝑘𝐴 𝐵𝑆)
2811, 13, 27syl2anc 583 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑘𝐴 𝐵𝑆)
2910, 28pm2.61dan 812 1 (𝜑 𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wne 2946  cun 3974  c0 4352   ciun 5015  cfv 6573  Fincfn 9003  OutMeascome 46410  CaraGenccaragen 46412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-xadd 13176  df-icc 13414  df-ome 46411  df-caragen 46413
This theorem is referenced by:  carageniuncllem1  46442  carageniuncllem2  46443
  Copyright terms: Public domain W3C validator