Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenfiiuncl | Structured version Visualization version GIF version |
Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenfiiuncl.kph | ⊢ Ⅎ𝑘𝜑 |
caragenfiiuncl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenfiiuncl.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragenfiiuncl.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
caragenfiiuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
caragenfiiuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1 4940 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) | |
2 | 0iun 4992 | . . . . . 6 ⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ ∅ 𝐵 = ∅) |
4 | 1, 3 | eqtrd 2778 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅) |
5 | 4 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅) |
6 | caragenfiiuncl.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
7 | caragenfiiuncl.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
8 | 6, 7 | caragen0 44044 | . . . 4 ⊢ (𝜑 → ∅ ∈ 𝑆) |
9 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∅ ∈ 𝑆) |
10 | 5, 9 | eqeltrd 2839 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
11 | simpl 483 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑) | |
12 | neqne 2951 | . . . 4 ⊢ (¬ 𝐴 = ∅ → 𝐴 ≠ ∅) | |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
14 | caragenfiiuncl.kph | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
15 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑘 𝐴 ≠ ∅ | |
16 | 14, 15 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐴 ≠ ∅) |
17 | caragenfiiuncl.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
18 | 17 | adantlr 712 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
19 | 6 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑂 ∈ OutMeas) |
20 | simp2 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
21 | simp3 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
22 | 19, 7, 20, 21 | caragenuncl 44051 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∪ 𝑦) ∈ 𝑆) |
23 | 22 | 3adant1r 1176 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∪ 𝑦) ∈ 𝑆) |
24 | caragenfiiuncl.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
25 | 24 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
26 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
27 | 16, 18, 23, 25, 26 | fiiuncl 42613 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
28 | 11, 13, 27 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
29 | 10, 28 | pm2.61dan 810 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ≠ wne 2943 ∪ cun 3885 ∅c0 4256 ∪ ciun 4924 ‘cfv 6433 Fincfn 8733 OutMeascome 44027 CaraGenccaragen 44029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-xadd 12849 df-icc 13086 df-ome 44028 df-caragen 44030 |
This theorem is referenced by: carageniuncllem1 44059 carageniuncllem2 44060 |
Copyright terms: Public domain | W3C validator |