| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenfiiuncl | Structured version Visualization version GIF version | ||
| Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenfiiuncl.kph | ⊢ Ⅎ𝑘𝜑 |
| caragenfiiuncl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragenfiiuncl.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| caragenfiiuncl.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| caragenfiiuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caragenfiiuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1 4984 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) | |
| 2 | 0iun 5039 | . . . . . 6 ⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ ∅ 𝐵 = ∅) |
| 4 | 1, 3 | eqtrd 2770 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅) |
| 6 | caragenfiiuncl.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 7 | caragenfiiuncl.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 8 | 6, 7 | caragen0 46535 | . . . 4 ⊢ (𝜑 → ∅ ∈ 𝑆) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∅ ∈ 𝑆) |
| 10 | 5, 9 | eqeltrd 2834 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 11 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑) | |
| 12 | neqne 2940 | . . . 4 ⊢ (¬ 𝐴 = ∅ → 𝐴 ≠ ∅) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
| 14 | caragenfiiuncl.kph | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 15 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝐴 ≠ ∅ | |
| 16 | 14, 15 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐴 ≠ ∅) |
| 17 | caragenfiiuncl.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
| 18 | 17 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| 19 | 6 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑂 ∈ OutMeas) |
| 20 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 21 | simp3 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 22 | 19, 7, 20, 21 | caragenuncl 46542 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∪ 𝑦) ∈ 𝑆) |
| 23 | 22 | 3adant1r 1178 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∪ 𝑦) ∈ 𝑆) |
| 24 | caragenfiiuncl.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 25 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
| 26 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 27 | 16, 18, 23, 25, 26 | fiiuncl 45089 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 28 | 11, 13, 27 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 29 | 10, 28 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ≠ wne 2932 ∪ cun 3924 ∅c0 4308 ∪ ciun 4967 ‘cfv 6531 Fincfn 8959 OutMeascome 46518 CaraGenccaragen 46520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-xadd 13129 df-icc 13369 df-ome 46519 df-caragen 46521 |
| This theorem is referenced by: carageniuncllem1 46550 carageniuncllem2 46551 |
| Copyright terms: Public domain | W3C validator |