Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenfiiuncl Structured version   Visualization version   GIF version

Theorem caragenfiiuncl 43152
Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenfiiuncl.kph 𝑘𝜑
caragenfiiuncl.o (𝜑𝑂 ∈ OutMeas)
caragenfiiuncl.s 𝑆 = (CaraGen‘𝑂)
caragenfiiuncl.a (𝜑𝐴 ∈ Fin)
caragenfiiuncl.b ((𝜑𝑘𝐴) → 𝐵𝑆)
Assertion
Ref Expression
caragenfiiuncl (𝜑 𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑂(𝑘)

Proof of Theorem caragenfiiuncl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 4897 . . . . 5 (𝐴 = ∅ → 𝑘𝐴 𝐵 = 𝑘 ∈ ∅ 𝐵)
2 0iun 4949 . . . . . 6 𝑘 ∈ ∅ 𝐵 = ∅
32a1i 11 . . . . 5 (𝐴 = ∅ → 𝑘 ∈ ∅ 𝐵 = ∅)
41, 3eqtrd 2833 . . . 4 (𝐴 = ∅ → 𝑘𝐴 𝐵 = ∅)
54adantl 485 . . 3 ((𝜑𝐴 = ∅) → 𝑘𝐴 𝐵 = ∅)
6 caragenfiiuncl.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
7 caragenfiiuncl.s . . . . 5 𝑆 = (CaraGen‘𝑂)
86, 7caragen0 43143 . . . 4 (𝜑 → ∅ ∈ 𝑆)
98adantr 484 . . 3 ((𝜑𝐴 = ∅) → ∅ ∈ 𝑆)
105, 9eqeltrd 2890 . 2 ((𝜑𝐴 = ∅) → 𝑘𝐴 𝐵𝑆)
11 simpl 486 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑)
12 neqne 2995 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
1312adantl 485 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
14 caragenfiiuncl.kph . . . . 5 𝑘𝜑
15 nfv 1915 . . . . 5 𝑘 𝐴 ≠ ∅
1614, 15nfan 1900 . . . 4 𝑘(𝜑𝐴 ≠ ∅)
17 caragenfiiuncl.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑆)
1817adantlr 714 . . . 4 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝐵𝑆)
1963ad2ant1 1130 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑂 ∈ OutMeas)
20 simp2 1134 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑥𝑆)
21 simp3 1135 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑦𝑆)
2219, 7, 20, 21caragenuncl 43150 . . . . 5 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
23223adant1r 1174 . . . 4 (((𝜑𝐴 ≠ ∅) ∧ 𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
24 caragenfiiuncl.a . . . . 5 (𝜑𝐴 ∈ Fin)
2524adantr 484 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
26 simpr 488 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2716, 18, 23, 25, 26fiiuncl 41697 . . 3 ((𝜑𝐴 ≠ ∅) → 𝑘𝐴 𝐵𝑆)
2811, 13, 27syl2anc 587 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑘𝐴 𝐵𝑆)
2910, 28pm2.61dan 812 1 (𝜑 𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wne 2987  cun 3879  c0 4243   ciun 4881  cfv 6324  Fincfn 8492  OutMeascome 43126  CaraGenccaragen 43128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-xadd 12496  df-icc 12733  df-ome 43127  df-caragen 43129
This theorem is referenced by:  carageniuncllem1  43158  carageniuncllem2  43159
  Copyright terms: Public domain W3C validator