![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenfiiuncl | Structured version Visualization version GIF version |
Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenfiiuncl.kph | β’ β²ππ |
caragenfiiuncl.o | β’ (π β π β OutMeas) |
caragenfiiuncl.s | β’ π = (CaraGenβπ) |
caragenfiiuncl.a | β’ (π β π΄ β Fin) |
caragenfiiuncl.b | β’ ((π β§ π β π΄) β π΅ β π) |
Ref | Expression |
---|---|
caragenfiiuncl | β’ (π β βͺ π β π΄ π΅ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1 5014 | . . . . 5 β’ (π΄ = β β βͺ π β π΄ π΅ = βͺ π β β π΅) | |
2 | 0iun 5067 | . . . . . 6 β’ βͺ π β β π΅ = β | |
3 | 2 | a1i 11 | . . . . 5 β’ (π΄ = β β βͺ π β β π΅ = β ) |
4 | 1, 3 | eqtrd 2771 | . . . 4 β’ (π΄ = β β βͺ π β π΄ π΅ = β ) |
5 | 4 | adantl 481 | . . 3 β’ ((π β§ π΄ = β ) β βͺ π β π΄ π΅ = β ) |
6 | caragenfiiuncl.o | . . . . 5 β’ (π β π β OutMeas) | |
7 | caragenfiiuncl.s | . . . . 5 β’ π = (CaraGenβπ) | |
8 | 6, 7 | caragen0 45522 | . . . 4 β’ (π β β β π) |
9 | 8 | adantr 480 | . . 3 β’ ((π β§ π΄ = β ) β β β π) |
10 | 5, 9 | eqeltrd 2832 | . 2 β’ ((π β§ π΄ = β ) β βͺ π β π΄ π΅ β π) |
11 | simpl 482 | . . 3 β’ ((π β§ Β¬ π΄ = β ) β π) | |
12 | neqne 2947 | . . . 4 β’ (Β¬ π΄ = β β π΄ β β ) | |
13 | 12 | adantl 481 | . . 3 β’ ((π β§ Β¬ π΄ = β ) β π΄ β β ) |
14 | caragenfiiuncl.kph | . . . . 5 β’ β²ππ | |
15 | nfv 1916 | . . . . 5 β’ β²π π΄ β β | |
16 | 14, 15 | nfan 1901 | . . . 4 β’ β²π(π β§ π΄ β β ) |
17 | caragenfiiuncl.b | . . . . 5 β’ ((π β§ π β π΄) β π΅ β π) | |
18 | 17 | adantlr 712 | . . . 4 β’ (((π β§ π΄ β β ) β§ π β π΄) β π΅ β π) |
19 | 6 | 3ad2ant1 1132 | . . . . . 6 β’ ((π β§ π₯ β π β§ π¦ β π) β π β OutMeas) |
20 | simp2 1136 | . . . . . 6 β’ ((π β§ π₯ β π β§ π¦ β π) β π₯ β π) | |
21 | simp3 1137 | . . . . . 6 β’ ((π β§ π₯ β π β§ π¦ β π) β π¦ β π) | |
22 | 19, 7, 20, 21 | caragenuncl 45529 | . . . . 5 β’ ((π β§ π₯ β π β§ π¦ β π) β (π₯ βͺ π¦) β π) |
23 | 22 | 3adant1r 1176 | . . . 4 β’ (((π β§ π΄ β β ) β§ π₯ β π β§ π¦ β π) β (π₯ βͺ π¦) β π) |
24 | caragenfiiuncl.a | . . . . 5 β’ (π β π΄ β Fin) | |
25 | 24 | adantr 480 | . . . 4 β’ ((π β§ π΄ β β ) β π΄ β Fin) |
26 | simpr 484 | . . . 4 β’ ((π β§ π΄ β β ) β π΄ β β ) | |
27 | 16, 18, 23, 25, 26 | fiiuncl 44055 | . . 3 β’ ((π β§ π΄ β β ) β βͺ π β π΄ π΅ β π) |
28 | 11, 13, 27 | syl2anc 583 | . 2 β’ ((π β§ Β¬ π΄ = β ) β βͺ π β π΄ π΅ β π) |
29 | 10, 28 | pm2.61dan 810 | 1 β’ (π β βͺ π β π΄ π΅ β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β²wnf 1784 β wcel 2105 β wne 2939 βͺ cun 3947 β c0 4323 βͺ ciun 4998 βcfv 6544 Fincfn 8942 OutMeascome 45505 CaraGenccaragen 45507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-xadd 13098 df-icc 13336 df-ome 45506 df-caragen 45508 |
This theorem is referenced by: carageniuncllem1 45537 carageniuncllem2 45538 |
Copyright terms: Public domain | W3C validator |