| Step | Hyp | Ref
| Expression |
| 1 | | totbndmet 37801 |
. 2
⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) |
| 2 | | 1rp 13017 |
. . 3
⊢ 1 ∈
ℝ+ |
| 3 | | istotbnd3 37800 |
. . . 4
⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 4 | 3 | simprbi 496 |
. . 3
⊢ (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑑 ∈ ℝ+
∃𝑣 ∈ (𝒫
𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋) |
| 5 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑑 = 1 → (𝑥(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)1)) |
| 6 | 5 | iuneq2d 5003 |
. . . . . 6
⊢ (𝑑 = 1 → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1)) |
| 7 | 6 | eqeq1d 2738 |
. . . . 5
⊢ (𝑑 = 1 → (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 ↔ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) |
| 8 | 7 | rexbidv 3165 |
. . . 4
⊢ (𝑑 = 1 → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) |
| 9 | 8 | rspcv 3602 |
. . 3
⊢ (1 ∈
ℝ+ → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) |
| 10 | 2, 4, 9 | mpsyl 68 |
. 2
⊢ (𝑀 ∈ (TotBnd‘𝑋) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋) |
| 11 | | simplll 774 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → 𝑀 ∈ (Met‘𝑋)) |
| 12 | | elfpw 9371 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ⊆ 𝑋 ∧ 𝑣 ∈ Fin)) |
| 13 | 12 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ⊆ 𝑋) |
| 14 | 13 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑣 ⊆ 𝑋) |
| 15 | 14 | sselda 3963 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ 𝑋) |
| 16 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → 𝑦 ∈ 𝑋) |
| 17 | | metcl 24276 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑧𝑀𝑦) ∈ ℝ) |
| 18 | 11, 15, 16, 17 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → (𝑧𝑀𝑦) ∈ ℝ) |
| 19 | | metge0 24289 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑧𝑀𝑦)) |
| 20 | 11, 15, 16, 19 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → 0 ≤ (𝑧𝑀𝑦)) |
| 21 | 18, 20 | ge0p1rpd 13086 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → ((𝑧𝑀𝑦) + 1) ∈
ℝ+) |
| 22 | 21 | fmpttd 7110 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)):𝑣⟶ℝ+) |
| 23 | 22 | frnd 6719 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆
ℝ+) |
| 24 | 12 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin) |
| 25 | | mptfi 9368 |
. . . . . . . . . 10
⊢ (𝑣 ∈ Fin → (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin) |
| 26 | | rnfi 9357 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin) |
| 27 | 24, 25, 26 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin) |
| 28 | 27 | ad2antrl 728 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin) |
| 29 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑦 ∈ 𝑋) |
| 30 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋) |
| 31 | 29, 30 | eleqtrrd 2838 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑦 ∈ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1)) |
| 32 | | ne0i 4321 |
. . . . . . . . 9
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) ≠ ∅) |
| 33 | | dm0rn0 5909 |
. . . . . . . . . . 11
⊢ (dom
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ ↔ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅) |
| 34 | | ovex 7443 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧𝑀𝑦) + 1) ∈ V |
| 35 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) |
| 36 | 34, 35 | dmmpti 6687 |
. . . . . . . . . . . . . 14
⊢ dom
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = 𝑣 |
| 37 | 36 | eqeq1i 2741 |
. . . . . . . . . . . . 13
⊢ (dom
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ ↔ 𝑣 = ∅) |
| 38 | | iuneq1 4989 |
. . . . . . . . . . . . 13
⊢ (𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = ∪
𝑥 ∈ ∅ (𝑥(ball‘𝑀)1)) |
| 39 | 37, 38 | sylbi 217 |
. . . . . . . . . . . 12
⊢ (dom
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = ∪
𝑥 ∈ ∅ (𝑥(ball‘𝑀)1)) |
| 40 | | 0iun 5044 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ ∅ (𝑥(ball‘𝑀)1) = ∅ |
| 41 | 39, 40 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ (dom
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = ∅) |
| 42 | 33, 41 | sylbir 235 |
. . . . . . . . . 10
⊢ (ran
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = ∅) |
| 43 | 42 | necon3i 2965 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) ≠ ∅ → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅) |
| 44 | 31, 32, 43 | 3syl 18 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅) |
| 45 | | rpssre 13021 |
. . . . . . . . 9
⊢
ℝ+ ⊆ ℝ |
| 46 | 23, 45 | sstrdi 3976 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ) |
| 47 | | ltso 11320 |
. . . . . . . . 9
⊢ < Or
ℝ |
| 48 | | fisupcl 9487 |
. . . . . . . . 9
⊢ (( <
Or ℝ ∧ (ran (𝑧
∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅ ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ)) → sup(ran
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))) |
| 49 | 47, 48 | mpan 690 |
. . . . . . . 8
⊢ ((ran
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅ ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ) → sup(ran
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))) |
| 50 | 28, 44, 46, 49 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))) |
| 51 | 23, 50 | sseldd 3964 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈
ℝ+) |
| 52 | | metxmet 24278 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
| 53 | 52 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑀 ∈ (∞Met‘𝑋)) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → 𝑀 ∈ (∞Met‘𝑋)) |
| 55 | | 1red 11241 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → 1 ∈ ℝ) |
| 56 | 46, 50 | sseldd 3964 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈
ℝ) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈
ℝ) |
| 58 | 46 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ) |
| 59 | 44 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅) |
| 60 | 28 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin) |
| 61 | | fimaxre2 12192 |
. . . . . . . . . . . . . . 15
⊢ ((ran
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin) → ∃𝑑 ∈ ℝ ∀𝑤 ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑤 ≤ 𝑑) |
| 62 | 58, 60, 61 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → ∃𝑑 ∈ ℝ ∀𝑤 ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑤 ≤ 𝑑) |
| 63 | 35 | elrnmpt1 5945 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑣 ∧ ((𝑧𝑀𝑦) + 1) ∈ V) → ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))) |
| 64 | 34, 63 | mpan2 691 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑣 → ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))) |
| 65 | 64 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))) |
| 66 | | suprub 12208 |
. . . . . . . . . . . . . 14
⊢ (((ran
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅ ∧ ∃𝑑 ∈ ℝ ∀𝑤 ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑤 ≤ 𝑑) ∧ ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))) → ((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) |
| 67 | 58, 59, 62, 65, 66 | syl31anc 1375 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → ((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) |
| 68 | | leaddsub 11718 |
. . . . . . . . . . . . . 14
⊢ (((𝑧𝑀𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧
sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ)
→ (((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ↔ (𝑧𝑀𝑦) ≤ (sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) −
1))) |
| 69 | 18, 55, 57, 68 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → (((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ↔ (𝑧𝑀𝑦) ≤ (sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) −
1))) |
| 70 | 67, 69 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → (𝑧𝑀𝑦) ≤ (sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) −
1)) |
| 71 | | blss2 24348 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (1 ∈ ℝ ∧ sup(ran
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ ∧
(𝑧𝑀𝑦) ≤ (sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) − 1))) →
(𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 72 | 54, 15, 16, 55, 57, 70, 71 | syl33anc 1387 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) → (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 73 | 72 | ralrimiva 3133 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∀𝑧 ∈ 𝑣 (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 74 | | nfcv 2899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(𝑥(ball‘𝑀)1) |
| 75 | | nfcv 2899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧𝑦 |
| 76 | | nfcv 2899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧(ball‘𝑀) |
| 77 | | nfmpt1 5225 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) |
| 78 | 77 | nfrn 5937 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧ran
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) |
| 79 | | nfcv 2899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧ℝ |
| 80 | | nfcv 2899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧
< |
| 81 | 78, 79, 80 | nfsup 9468 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) |
| 82 | 75, 76, 81 | nfov 7440 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) |
| 83 | 74, 82 | nfss 3956 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) |
| 84 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) |
| 85 | | oveq1 7417 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥(ball‘𝑀)1) = (𝑧(ball‘𝑀)1)) |
| 86 | 85 | sseq1d 3995 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))) |
| 87 | 83, 84, 86 | cbvralw 3290 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔
∀𝑧 ∈ 𝑣 (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 88 | 73, 87 | sylibr 234 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∀𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 89 | | iunss 5026 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔
∀𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 90 | 88, 89 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 91 | 30, 90 | eqsstrrd 3999 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑋 ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 92 | 51 | rpxrd 13057 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈
ℝ*) |
| 93 | | blssm 24362 |
. . . . . . . 8
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈
ℝ*) → (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ⊆ 𝑋) |
| 94 | 53, 29, 92, 93 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ⊆ 𝑋) |
| 95 | 91, 94 | eqssd 3981 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑋 = (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 96 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑑 = sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) → (𝑦(ball‘𝑀)𝑑) = (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) |
| 97 | 96 | rspceeqv 3629 |
. . . . . 6
⊢ ((sup(ran
(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈
ℝ+ ∧ 𝑋
= (𝑦(ball‘𝑀)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) →
∃𝑑 ∈
ℝ+ 𝑋 =
(𝑦(ball‘𝑀)𝑑)) |
| 98 | 51, 95, 97 | syl2anc 584 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑)) |
| 99 | 98 | rexlimdvaa 3143 |
. . . 4
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋 → ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑))) |
| 100 | 99 | ralrimdva 3141 |
. . 3
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋 → ∀𝑦 ∈ 𝑋 ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑))) |
| 101 | | isbnd 37809 |
. . . 4
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑))) |
| 102 | 101 | baib 535 |
. . 3
⊢ (𝑀 ∈ (Met‘𝑋) → (𝑀 ∈ (Bnd‘𝑋) ↔ ∀𝑦 ∈ 𝑋 ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑))) |
| 103 | 100, 102 | sylibrd 259 |
. 2
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)1) = 𝑋 → 𝑀 ∈ (Bnd‘𝑋))) |
| 104 | 1, 10, 103 | sylc 65 |
1
⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Bnd‘𝑋)) |