Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndbnd Structured version   Visualization version   GIF version

Theorem totbndbnd 36645
Description: A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd 36625 to only require that 𝑀 be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +∞) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
totbndbnd (𝑀 ∈ (TotBndβ€˜π‘‹) β†’ 𝑀 ∈ (Bndβ€˜π‘‹))

Proof of Theorem totbndbnd
Dummy variables 𝑣 𝑑 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndmet 36628 . 2 (𝑀 ∈ (TotBndβ€˜π‘‹) β†’ 𝑀 ∈ (Metβ€˜π‘‹))
2 1rp 12974 . . 3 1 ∈ ℝ+
3 istotbnd3 36627 . . . 4 (𝑀 ∈ (TotBndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
43simprbi 497 . . 3 (𝑀 ∈ (TotBndβ€˜π‘‹) β†’ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)
5 oveq2 7413 . . . . . . 7 (𝑑 = 1 β†’ (π‘₯(ballβ€˜π‘€)𝑑) = (π‘₯(ballβ€˜π‘€)1))
65iuneq2d 5025 . . . . . 6 (𝑑 = 1 β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1))
76eqeq1d 2734 . . . . 5 (𝑑 = 1 β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋 ↔ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋))
87rexbidv 3178 . . . 4 (𝑑 = 1 β†’ (βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋 ↔ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋))
98rspcv 3608 . . 3 (1 ∈ ℝ+ β†’ (βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋 β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋))
102, 4, 9mpsyl 68 . 2 (𝑀 ∈ (TotBndβ€˜π‘‹) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)
11 simplll 773 . . . . . . . . . . 11 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ 𝑀 ∈ (Metβ€˜π‘‹))
12 elfpw 9350 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 βŠ† 𝑋 ∧ 𝑣 ∈ Fin))
1312simplbi 498 . . . . . . . . . . . . 13 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) β†’ 𝑣 βŠ† 𝑋)
1413ad2antrl 726 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ 𝑣 βŠ† 𝑋)
1514sselda 3981 . . . . . . . . . . 11 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ 𝑧 ∈ 𝑋)
16 simpllr 774 . . . . . . . . . . 11 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ 𝑦 ∈ 𝑋)
17 metcl 23829 . . . . . . . . . . 11 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (𝑧𝑀𝑦) ∈ ℝ)
1811, 15, 16, 17syl3anc 1371 . . . . . . . . . 10 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ (𝑧𝑀𝑦) ∈ ℝ)
19 metge0 23842 . . . . . . . . . . 11 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ 0 ≀ (𝑧𝑀𝑦))
2011, 15, 16, 19syl3anc 1371 . . . . . . . . . 10 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ 0 ≀ (𝑧𝑀𝑦))
2118, 20ge0p1rpd 13042 . . . . . . . . 9 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ ((𝑧𝑀𝑦) + 1) ∈ ℝ+)
2221fmpttd 7111 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)):π‘£βŸΆβ„+)
2322frnd 6722 . . . . . . 7 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) βŠ† ℝ+)
2412simprbi 497 . . . . . . . . . 10 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) β†’ 𝑣 ∈ Fin)
25 mptfi 9347 . . . . . . . . . 10 (𝑣 ∈ Fin β†’ (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
26 rnfi 9331 . . . . . . . . . 10 ((𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
2724, 25, 263syl 18 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
2827ad2antrl 726 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
29 simplr 767 . . . . . . . . . 10 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ 𝑦 ∈ 𝑋)
30 simprr 771 . . . . . . . . . 10 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)
3129, 30eleqtrrd 2836 . . . . . . . . 9 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ 𝑦 ∈ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1))
32 ne0i 4333 . . . . . . . . 9 (𝑦 ∈ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) β‰  βˆ…)
33 dm0rn0 5922 . . . . . . . . . . 11 (dom (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = βˆ… ↔ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = βˆ…)
34 ovex 7438 . . . . . . . . . . . . . . 15 ((𝑧𝑀𝑦) + 1) ∈ V
35 eqid 2732 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))
3634, 35dmmpti 6691 . . . . . . . . . . . . . 14 dom (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = 𝑣
3736eqeq1i 2737 . . . . . . . . . . . . 13 (dom (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = βˆ… ↔ 𝑣 = βˆ…)
38 iuneq1 5012 . . . . . . . . . . . . 13 (𝑣 = βˆ… β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = βˆͺ π‘₯ ∈ βˆ… (π‘₯(ballβ€˜π‘€)1))
3937, 38sylbi 216 . . . . . . . . . . . 12 (dom (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = βˆ… β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = βˆͺ π‘₯ ∈ βˆ… (π‘₯(ballβ€˜π‘€)1))
40 0iun 5065 . . . . . . . . . . . 12 βˆͺ π‘₯ ∈ βˆ… (π‘₯(ballβ€˜π‘€)1) = βˆ…
4139, 40eqtrdi 2788 . . . . . . . . . . 11 (dom (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = βˆ… β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = βˆ…)
4233, 41sylbir 234 . . . . . . . . . 10 (ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = βˆ… β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = βˆ…)
4342necon3i 2973 . . . . . . . . 9 (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) β‰  βˆ… β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) β‰  βˆ…)
4431, 32, 433syl 18 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) β‰  βˆ…)
45 rpssre 12977 . . . . . . . . 9 ℝ+ βŠ† ℝ
4623, 45sstrdi 3993 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) βŠ† ℝ)
47 ltso 11290 . . . . . . . . 9 < Or ℝ
48 fisupcl 9460 . . . . . . . . 9 (( < Or ℝ ∧ (ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) β‰  βˆ… ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) βŠ† ℝ)) β†’ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
4947, 48mpan 688 . . . . . . . 8 ((ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) β‰  βˆ… ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) βŠ† ℝ) β†’ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
5028, 44, 46, 49syl3anc 1371 . . . . . . 7 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
5123, 50sseldd 3982 . . . . . 6 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ+)
52 metxmet 23831 . . . . . . . . . . . . . 14 (𝑀 ∈ (Metβ€˜π‘‹) β†’ 𝑀 ∈ (∞Metβ€˜π‘‹))
5352ad2antrr 724 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ 𝑀 ∈ (∞Metβ€˜π‘‹))
5453adantr 481 . . . . . . . . . . . 12 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ 𝑀 ∈ (∞Metβ€˜π‘‹))
55 1red 11211 . . . . . . . . . . . 12 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ 1 ∈ ℝ)
5646, 50sseldd 3982 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ)
5756adantr 481 . . . . . . . . . . . 12 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ)
5846adantr 481 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) βŠ† ℝ)
5944adantr 481 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) β‰  βˆ…)
6028adantr 481 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
61 fimaxre2 12155 . . . . . . . . . . . . . . 15 ((ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) βŠ† ℝ ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin) β†’ βˆƒπ‘‘ ∈ ℝ βˆ€π‘€ ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑀 ≀ 𝑑)
6258, 60, 61syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ βˆƒπ‘‘ ∈ ℝ βˆ€π‘€ ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑀 ≀ 𝑑)
6335elrnmpt1 5955 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ 𝑣 ∧ ((𝑧𝑀𝑦) + 1) ∈ V) β†’ ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
6434, 63mpan2 689 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝑣 β†’ ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
6564adantl 482 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
66 suprub 12171 . . . . . . . . . . . . . 14 (((ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) βŠ† ℝ ∧ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)) β‰  βˆ… ∧ βˆƒπ‘‘ ∈ ℝ βˆ€π‘€ ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑀 ≀ 𝑑) ∧ ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))) β†’ ((𝑧𝑀𝑦) + 1) ≀ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
6758, 59, 62, 65, 66syl31anc 1373 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ ((𝑧𝑀𝑦) + 1) ≀ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
68 leaddsub 11686 . . . . . . . . . . . . . 14 (((𝑧𝑀𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ) β†’ (((𝑧𝑀𝑦) + 1) ≀ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ↔ (𝑧𝑀𝑦) ≀ (sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) βˆ’ 1)))
6918, 55, 57, 68syl3anc 1371 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ (((𝑧𝑀𝑦) + 1) ≀ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ↔ (𝑧𝑀𝑦) ≀ (sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) βˆ’ 1)))
7067, 69mpbid 231 . . . . . . . . . . . 12 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ (𝑧𝑀𝑦) ≀ (sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) βˆ’ 1))
71 blss2 23901 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (1 ∈ ℝ ∧ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ ∧ (𝑧𝑀𝑦) ≀ (sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) βˆ’ 1))) β†’ (𝑧(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
7254, 15, 16, 55, 57, 70, 71syl33anc 1385 . . . . . . . . . . 11 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) ∧ 𝑧 ∈ 𝑣) β†’ (𝑧(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
7372ralrimiva 3146 . . . . . . . . . 10 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ βˆ€π‘§ ∈ 𝑣 (𝑧(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
74 nfcv 2903 . . . . . . . . . . . 12 Ⅎ𝑧(π‘₯(ballβ€˜π‘€)1)
75 nfcv 2903 . . . . . . . . . . . . 13 Ⅎ𝑧𝑦
76 nfcv 2903 . . . . . . . . . . . . 13 Ⅎ𝑧(ballβ€˜π‘€)
77 nfmpt1 5255 . . . . . . . . . . . . . . 15 Ⅎ𝑧(𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))
7877nfrn 5949 . . . . . . . . . . . . . 14 Ⅎ𝑧ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1))
79 nfcv 2903 . . . . . . . . . . . . . 14 Ⅎ𝑧ℝ
80 nfcv 2903 . . . . . . . . . . . . . 14 Ⅎ𝑧 <
8178, 79, 80nfsup 9442 . . . . . . . . . . . . 13 Ⅎ𝑧sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )
8275, 76, 81nfov 7435 . . . . . . . . . . . 12 Ⅎ𝑧(𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
8374, 82nfss 3973 . . . . . . . . . . 11 Ⅎ𝑧(π‘₯(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
84 nfv 1917 . . . . . . . . . . 11 β„²π‘₯(𝑧(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
85 oveq1 7412 . . . . . . . . . . . 12 (π‘₯ = 𝑧 β†’ (π‘₯(ballβ€˜π‘€)1) = (𝑧(ballβ€˜π‘€)1))
8685sseq1d 4012 . . . . . . . . . . 11 (π‘₯ = 𝑧 β†’ ((π‘₯(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ (𝑧(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))))
8783, 84, 86cbvralw 3303 . . . . . . . . . 10 (βˆ€π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ βˆ€π‘§ ∈ 𝑣 (𝑧(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
8873, 87sylibr 233 . . . . . . . . 9 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ βˆ€π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
89 iunss 5047 . . . . . . . . 9 (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ βˆ€π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9088, 89sylibr 233 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9130, 90eqsstrrd 4020 . . . . . . 7 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ 𝑋 βŠ† (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9251rpxrd 13013 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ*)
93 blssm 23915 . . . . . . . 8 ((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ*) β†’ (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) βŠ† 𝑋)
9453, 29, 92, 93syl3anc 1371 . . . . . . 7 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) βŠ† 𝑋)
9591, 94eqssd 3998 . . . . . 6 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ 𝑋 = (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
96 oveq2 7413 . . . . . . 7 (𝑑 = sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) β†’ (𝑦(ballβ€˜π‘€)𝑑) = (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9796rspceeqv 3632 . . . . . 6 ((sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ+ ∧ 𝑋 = (𝑦(ballβ€˜π‘€)sup(ran (𝑧 ∈ 𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) β†’ βˆƒπ‘‘ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)𝑑))
9851, 95, 97syl2anc 584 . . . . 5 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋)) β†’ βˆƒπ‘‘ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)𝑑))
9998rexlimdvaa 3156 . . . 4 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) β†’ (βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋 β†’ βˆƒπ‘‘ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)𝑑)))
10099ralrimdva 3154 . . 3 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋 β†’ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘‘ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)𝑑)))
101 isbnd 36636 . . . 4 (𝑀 ∈ (Bndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘‘ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)𝑑)))
102101baib 536 . . 3 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (𝑀 ∈ (Bndβ€˜π‘‹) ↔ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘‘ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)𝑑)))
103100, 102sylibrd 258 . 2 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)1) = 𝑋 β†’ 𝑀 ∈ (Bndβ€˜π‘‹)))
1041, 10, 103sylc 65 1 (𝑀 ∈ (TotBndβ€˜π‘‹) β†’ 𝑀 ∈ (Bndβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  βˆͺ ciun 4996   class class class wbr 5147   ↦ cmpt 5230   Or wor 5586  dom cdm 5675  ran crn 5676  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  supcsup 9431  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109  β„*cxr 11243   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440  β„+crp 12970  βˆžMetcxmet 20921  Metcmet 20922  ballcbl 20923  TotBndctotbnd 36622  Bndcbnd 36623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-totbnd 36624  df-bnd 36635
This theorem is referenced by:  equivbnd2  36648  prdsbnd2  36651  cntotbnd  36652  cnpwstotbnd  36653
  Copyright terms: Public domain W3C validator