Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndbnd Structured version   Visualization version   GIF version

Theorem totbndbnd 37828
Description: A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd 37808 to only require that 𝑀 be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +∞) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
totbndbnd (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Bnd‘𝑋))

Proof of Theorem totbndbnd
Dummy variables 𝑣 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndmet 37811 . 2 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
2 1rp 12891 . . 3 1 ∈ ℝ+
3 istotbnd3 37810 . . . 4 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
43simprbi 496 . . 3 (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)
5 oveq2 7354 . . . . . . 7 (𝑑 = 1 → (𝑥(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)1))
65iuneq2d 4972 . . . . . 6 (𝑑 = 1 → 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑥𝑣 (𝑥(ball‘𝑀)1))
76eqeq1d 2733 . . . . 5 (𝑑 = 1 → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋))
87rexbidv 3156 . . . 4 (𝑑 = 1 → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋))
98rspcv 3573 . . 3 (1 ∈ ℝ+ → (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋))
102, 4, 9mpsyl 68 . 2 (𝑀 ∈ (TotBnd‘𝑋) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)
11 simplll 774 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 𝑀 ∈ (Met‘𝑋))
12 elfpw 9238 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣𝑋𝑣 ∈ Fin))
1312simplbi 497 . . . . . . . . . . . . 13 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣𝑋)
1413ad2antrl 728 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑣𝑋)
1514sselda 3934 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 𝑧𝑋)
16 simpllr 775 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 𝑦𝑋)
17 metcl 24245 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑦𝑋) → (𝑧𝑀𝑦) ∈ ℝ)
1811, 15, 16, 17syl3anc 1373 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → (𝑧𝑀𝑦) ∈ ℝ)
19 metge0 24258 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑦𝑋) → 0 ≤ (𝑧𝑀𝑦))
2011, 15, 16, 19syl3anc 1373 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 0 ≤ (𝑧𝑀𝑦))
2118, 20ge0p1rpd 12961 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ((𝑧𝑀𝑦) + 1) ∈ ℝ+)
2221fmpttd 7048 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)):𝑣⟶ℝ+)
2322frnd 6659 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ+)
2412simprbi 496 . . . . . . . . . 10 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin)
25 mptfi 9235 . . . . . . . . . 10 (𝑣 ∈ Fin → (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
26 rnfi 9224 . . . . . . . . . 10 ((𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
2724, 25, 263syl 18 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
2827ad2antrl 728 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
29 simplr 768 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑦𝑋)
30 simprr 772 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)
3129, 30eleqtrrd 2834 . . . . . . . . 9 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑦 𝑥𝑣 (𝑥(ball‘𝑀)1))
32 ne0i 4291 . . . . . . . . 9 (𝑦 𝑥𝑣 (𝑥(ball‘𝑀)1) → 𝑥𝑣 (𝑥(ball‘𝑀)1) ≠ ∅)
33 dm0rn0 5864 . . . . . . . . . . 11 (dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ ↔ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅)
34 ovex 7379 . . . . . . . . . . . . . . 15 ((𝑧𝑀𝑦) + 1) ∈ V
35 eqid 2731 . . . . . . . . . . . . . . 15 (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))
3634, 35dmmpti 6625 . . . . . . . . . . . . . 14 dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = 𝑣
3736eqeq1i 2736 . . . . . . . . . . . . 13 (dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ ↔ 𝑣 = ∅)
38 iuneq1 4958 . . . . . . . . . . . . 13 (𝑣 = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑥 ∈ ∅ (𝑥(ball‘𝑀)1))
3937, 38sylbi 217 . . . . . . . . . . . 12 (dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑥 ∈ ∅ (𝑥(ball‘𝑀)1))
40 0iun 5011 . . . . . . . . . . . 12 𝑥 ∈ ∅ (𝑥(ball‘𝑀)1) = ∅
4139, 40eqtrdi 2782 . . . . . . . . . . 11 (dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)1) = ∅)
4233, 41sylbir 235 . . . . . . . . . 10 (ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)1) = ∅)
4342necon3i 2960 . . . . . . . . 9 ( 𝑥𝑣 (𝑥(ball‘𝑀)1) ≠ ∅ → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅)
4431, 32, 433syl 18 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅)
45 rpssre 12895 . . . . . . . . 9 + ⊆ ℝ
4623, 45sstrdi 3947 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ)
47 ltso 11190 . . . . . . . . 9 < Or ℝ
48 fisupcl 9354 . . . . . . . . 9 (( < Or ℝ ∧ (ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅ ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
4947, 48mpan 690 . . . . . . . 8 ((ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅ ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
5028, 44, 46, 49syl3anc 1373 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
5123, 50sseldd 3935 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ+)
52 metxmet 24247 . . . . . . . . . . . . . 14 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
5352ad2antrr 726 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
5453adantr 480 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 𝑀 ∈ (∞Met‘𝑋))
55 1red 11110 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 1 ∈ ℝ)
5646, 50sseldd 3935 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ)
5756adantr 480 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ)
5846adantr 480 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ)
5944adantr 480 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅)
6028adantr 480 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
61 fimaxre2 12064 . . . . . . . . . . . . . . 15 ((ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin) → ∃𝑑 ∈ ℝ ∀𝑤 ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑤𝑑)
6258, 60, 61syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ∃𝑑 ∈ ℝ ∀𝑤 ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑤𝑑)
6335elrnmpt1 5900 . . . . . . . . . . . . . . . 16 ((𝑧𝑣 ∧ ((𝑧𝑀𝑦) + 1) ∈ V) → ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
6434, 63mpan2 691 . . . . . . . . . . . . . . 15 (𝑧𝑣 → ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
6564adantl 481 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
66 suprub 12080 . . . . . . . . . . . . . 14 (((ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅ ∧ ∃𝑑 ∈ ℝ ∀𝑤 ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑤𝑑) ∧ ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))) → ((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
6758, 59, 62, 65, 66syl31anc 1375 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
68 leaddsub 11590 . . . . . . . . . . . . . 14 (((𝑧𝑀𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ) → (((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ↔ (𝑧𝑀𝑦) ≤ (sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) − 1)))
6918, 55, 57, 68syl3anc 1373 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → (((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ↔ (𝑧𝑀𝑦) ≤ (sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) − 1)))
7067, 69mpbid 232 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → (𝑧𝑀𝑦) ≤ (sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) − 1))
71 blss2 24317 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑦𝑋) ∧ (1 ∈ ℝ ∧ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ ∧ (𝑧𝑀𝑦) ≤ (sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) − 1))) → (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
7254, 15, 16, 55, 57, 70, 71syl33anc 1387 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
7372ralrimiva 3124 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∀𝑧𝑣 (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
74 nfcv 2894 . . . . . . . . . . . 12 𝑧(𝑥(ball‘𝑀)1)
75 nfcv 2894 . . . . . . . . . . . . 13 𝑧𝑦
76 nfcv 2894 . . . . . . . . . . . . 13 𝑧(ball‘𝑀)
77 nfmpt1 5190 . . . . . . . . . . . . . . 15 𝑧(𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))
7877nfrn 5892 . . . . . . . . . . . . . 14 𝑧ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))
79 nfcv 2894 . . . . . . . . . . . . . 14 𝑧
80 nfcv 2894 . . . . . . . . . . . . . 14 𝑧 <
8178, 79, 80nfsup 9335 . . . . . . . . . . . . 13 𝑧sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )
8275, 76, 81nfov 7376 . . . . . . . . . . . 12 𝑧(𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
8374, 82nfss 3927 . . . . . . . . . . 11 𝑧(𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
84 nfv 1915 . . . . . . . . . . 11 𝑥(𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
85 oveq1 7353 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥(ball‘𝑀)1) = (𝑧(ball‘𝑀)1))
8685sseq1d 3966 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))))
8783, 84, 86cbvralw 3274 . . . . . . . . . 10 (∀𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ ∀𝑧𝑣 (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
8873, 87sylibr 234 . . . . . . . . 9 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∀𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
89 iunss 4994 . . . . . . . . 9 ( 𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ ∀𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9088, 89sylibr 234 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9130, 90eqsstrrd 3970 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑋 ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9251rpxrd 12932 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ*)
93 blssm 24331 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ*) → (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ⊆ 𝑋)
9453, 29, 92, 93syl3anc 1373 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ⊆ 𝑋)
9591, 94eqssd 3952 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑋 = (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
96 oveq2 7354 . . . . . . 7 (𝑑 = sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) → (𝑦(ball‘𝑀)𝑑) = (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9796rspceeqv 3600 . . . . . 6 ((sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ+𝑋 = (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) → ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑))
9851, 95, 97syl2anc 584 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑))
9998rexlimdvaa 3134 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋 → ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑)))
10099ralrimdva 3132 . . 3 (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋 → ∀𝑦𝑋𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑)))
101 isbnd 37819 . . . 4 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑)))
102101baib 535 . . 3 (𝑀 ∈ (Met‘𝑋) → (𝑀 ∈ (Bnd‘𝑋) ↔ ∀𝑦𝑋𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑)))
103100, 102sylibrd 259 . 2 (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋𝑀 ∈ (Bnd‘𝑋)))
1041, 10, 103sylc 65 1 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550   ciun 4941   class class class wbr 5091  cmpt 5172   Or wor 5523  dom cdm 5616  ran crn 5617  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  cr 11002  0cc0 11003  1c1 11004   + caddc 11006  *cxr 11142   < clt 11143  cle 11144  cmin 11341  +crp 12887  ∞Metcxmet 21274  Metcmet 21275  ballcbl 21276  TotBndctotbnd 37805  Bndcbnd 37806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-2 12185  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-totbnd 37807  df-bnd 37818
This theorem is referenced by:  equivbnd2  37831  prdsbnd2  37834  cntotbnd  37835  cnpwstotbnd  37836
  Copyright terms: Public domain W3C validator