Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndbnd Structured version   Visualization version   GIF version

Theorem totbndbnd 37783
Description: A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd 37763 to only require that 𝑀 be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +∞) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
totbndbnd (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Bnd‘𝑋))

Proof of Theorem totbndbnd
Dummy variables 𝑣 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndmet 37766 . 2 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
2 1rp 12955 . . 3 1 ∈ ℝ+
3 istotbnd3 37765 . . . 4 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
43simprbi 496 . . 3 (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)
5 oveq2 7395 . . . . . . 7 (𝑑 = 1 → (𝑥(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)1))
65iuneq2d 4986 . . . . . 6 (𝑑 = 1 → 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑥𝑣 (𝑥(ball‘𝑀)1))
76eqeq1d 2731 . . . . 5 (𝑑 = 1 → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋))
87rexbidv 3157 . . . 4 (𝑑 = 1 → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋))
98rspcv 3584 . . 3 (1 ∈ ℝ+ → (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋))
102, 4, 9mpsyl 68 . 2 (𝑀 ∈ (TotBnd‘𝑋) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)
11 simplll 774 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 𝑀 ∈ (Met‘𝑋))
12 elfpw 9305 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣𝑋𝑣 ∈ Fin))
1312simplbi 497 . . . . . . . . . . . . 13 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣𝑋)
1413ad2antrl 728 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑣𝑋)
1514sselda 3946 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 𝑧𝑋)
16 simpllr 775 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 𝑦𝑋)
17 metcl 24220 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑦𝑋) → (𝑧𝑀𝑦) ∈ ℝ)
1811, 15, 16, 17syl3anc 1373 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → (𝑧𝑀𝑦) ∈ ℝ)
19 metge0 24233 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑦𝑋) → 0 ≤ (𝑧𝑀𝑦))
2011, 15, 16, 19syl3anc 1373 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 0 ≤ (𝑧𝑀𝑦))
2118, 20ge0p1rpd 13025 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ((𝑧𝑀𝑦) + 1) ∈ ℝ+)
2221fmpttd 7087 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)):𝑣⟶ℝ+)
2322frnd 6696 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ+)
2412simprbi 496 . . . . . . . . . 10 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin)
25 mptfi 9302 . . . . . . . . . 10 (𝑣 ∈ Fin → (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
26 rnfi 9291 . . . . . . . . . 10 ((𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
2724, 25, 263syl 18 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
2827ad2antrl 728 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
29 simplr 768 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑦𝑋)
30 simprr 772 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)
3129, 30eleqtrrd 2831 . . . . . . . . 9 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑦 𝑥𝑣 (𝑥(ball‘𝑀)1))
32 ne0i 4304 . . . . . . . . 9 (𝑦 𝑥𝑣 (𝑥(ball‘𝑀)1) → 𝑥𝑣 (𝑥(ball‘𝑀)1) ≠ ∅)
33 dm0rn0 5888 . . . . . . . . . . 11 (dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ ↔ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅)
34 ovex 7420 . . . . . . . . . . . . . . 15 ((𝑧𝑀𝑦) + 1) ∈ V
35 eqid 2729 . . . . . . . . . . . . . . 15 (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))
3634, 35dmmpti 6662 . . . . . . . . . . . . . 14 dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = 𝑣
3736eqeq1i 2734 . . . . . . . . . . . . 13 (dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ ↔ 𝑣 = ∅)
38 iuneq1 4972 . . . . . . . . . . . . 13 (𝑣 = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑥 ∈ ∅ (𝑥(ball‘𝑀)1))
3937, 38sylbi 217 . . . . . . . . . . . 12 (dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑥 ∈ ∅ (𝑥(ball‘𝑀)1))
40 0iun 5027 . . . . . . . . . . . 12 𝑥 ∈ ∅ (𝑥(ball‘𝑀)1) = ∅
4139, 40eqtrdi 2780 . . . . . . . . . . 11 (dom (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)1) = ∅)
4233, 41sylbir 235 . . . . . . . . . 10 (ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) = ∅ → 𝑥𝑣 (𝑥(ball‘𝑀)1) = ∅)
4342necon3i 2957 . . . . . . . . 9 ( 𝑥𝑣 (𝑥(ball‘𝑀)1) ≠ ∅ → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅)
4431, 32, 433syl 18 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅)
45 rpssre 12959 . . . . . . . . 9 + ⊆ ℝ
4623, 45sstrdi 3959 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ)
47 ltso 11254 . . . . . . . . 9 < Or ℝ
48 fisupcl 9421 . . . . . . . . 9 (( < Or ℝ ∧ (ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅ ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
4947, 48mpan 690 . . . . . . . 8 ((ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅ ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
5028, 44, 46, 49syl3anc 1373 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
5123, 50sseldd 3947 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ+)
52 metxmet 24222 . . . . . . . . . . . . . 14 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
5352ad2antrr 726 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
5453adantr 480 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 𝑀 ∈ (∞Met‘𝑋))
55 1red 11175 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → 1 ∈ ℝ)
5646, 50sseldd 3947 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ)
5756adantr 480 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ)
5846adantr 480 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ)
5944adantr 480 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅)
6028adantr 480 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin)
61 fimaxre2 12128 . . . . . . . . . . . . . . 15 ((ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ∈ Fin) → ∃𝑑 ∈ ℝ ∀𝑤 ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑤𝑑)
6258, 60, 61syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ∃𝑑 ∈ ℝ ∀𝑤 ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑤𝑑)
6335elrnmpt1 5924 . . . . . . . . . . . . . . . 16 ((𝑧𝑣 ∧ ((𝑧𝑀𝑦) + 1) ∈ V) → ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
6434, 63mpan2 691 . . . . . . . . . . . . . . 15 (𝑧𝑣 → ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
6564adantl 481 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)))
66 suprub 12144 . . . . . . . . . . . . . 14 (((ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ⊆ ℝ ∧ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)) ≠ ∅ ∧ ∃𝑑 ∈ ℝ ∀𝑤 ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))𝑤𝑑) ∧ ((𝑧𝑀𝑦) + 1) ∈ ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))) → ((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
6758, 59, 62, 65, 66syl31anc 1375 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → ((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
68 leaddsub 11654 . . . . . . . . . . . . . 14 (((𝑧𝑀𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ) → (((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ↔ (𝑧𝑀𝑦) ≤ (sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) − 1)))
6918, 55, 57, 68syl3anc 1373 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → (((𝑧𝑀𝑦) + 1) ≤ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ↔ (𝑧𝑀𝑦) ≤ (sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) − 1)))
7067, 69mpbid 232 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → (𝑧𝑀𝑦) ≤ (sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) − 1))
71 blss2 24292 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑦𝑋) ∧ (1 ∈ ℝ ∧ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ ∧ (𝑧𝑀𝑦) ≤ (sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) − 1))) → (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
7254, 15, 16, 55, 57, 70, 71syl33anc 1387 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) ∧ 𝑧𝑣) → (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
7372ralrimiva 3125 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∀𝑧𝑣 (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
74 nfcv 2891 . . . . . . . . . . . 12 𝑧(𝑥(ball‘𝑀)1)
75 nfcv 2891 . . . . . . . . . . . . 13 𝑧𝑦
76 nfcv 2891 . . . . . . . . . . . . 13 𝑧(ball‘𝑀)
77 nfmpt1 5206 . . . . . . . . . . . . . . 15 𝑧(𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))
7877nfrn 5916 . . . . . . . . . . . . . 14 𝑧ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1))
79 nfcv 2891 . . . . . . . . . . . . . 14 𝑧
80 nfcv 2891 . . . . . . . . . . . . . 14 𝑧 <
8178, 79, 80nfsup 9402 . . . . . . . . . . . . 13 𝑧sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )
8275, 76, 81nfov 7417 . . . . . . . . . . . 12 𝑧(𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
8374, 82nfss 3939 . . . . . . . . . . 11 𝑧(𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
84 nfv 1914 . . . . . . . . . . 11 𝑥(𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))
85 oveq1 7394 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥(ball‘𝑀)1) = (𝑧(ball‘𝑀)1))
8685sseq1d 3978 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))))
8783, 84, 86cbvralw 3280 . . . . . . . . . 10 (∀𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ ∀𝑧𝑣 (𝑧(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
8873, 87sylibr 234 . . . . . . . . 9 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∀𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
89 iunss 5009 . . . . . . . . 9 ( 𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ↔ ∀𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9088, 89sylibr 234 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑥𝑣 (𝑥(ball‘𝑀)1) ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9130, 90eqsstrrd 3982 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑋 ⊆ (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9251rpxrd 12996 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ*)
93 blssm 24306 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ*) → (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ⊆ 𝑋)
9453, 29, 92, 93syl3anc 1373 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )) ⊆ 𝑋)
9591, 94eqssd 3964 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → 𝑋 = (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
96 oveq2 7395 . . . . . . 7 (𝑑 = sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) → (𝑦(ball‘𝑀)𝑑) = (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < )))
9796rspceeqv 3611 . . . . . 6 ((sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ) ∈ ℝ+𝑋 = (𝑦(ball‘𝑀)sup(ran (𝑧𝑣 ↦ ((𝑧𝑀𝑦) + 1)), ℝ, < ))) → ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑))
9851, 95, 97syl2anc 584 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋)) → ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑))
9998rexlimdvaa 3135 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋 → ∃𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑)))
10099ralrimdva 3133 . . 3 (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋 → ∀𝑦𝑋𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑)))
101 isbnd 37774 . . . 4 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑)))
102101baib 535 . . 3 (𝑀 ∈ (Met‘𝑋) → (𝑀 ∈ (Bnd‘𝑋) ↔ ∀𝑦𝑋𝑑 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑑)))
103100, 102sylibrd 259 . 2 (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)1) = 𝑋𝑀 ∈ (Bnd‘𝑋)))
1041, 10, 103sylc 65 1 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   ciun 4955   class class class wbr 5107  cmpt 5188   Or wor 5545  dom cdm 5638  ran crn 5639  cfv 6511  (class class class)co 7387  Fincfn 8918  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cle 11209  cmin 11405  +crp 12951  ∞Metcxmet 21249  Metcmet 21250  ballcbl 21251  TotBndctotbnd 37760  Bndcbnd 37761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-2 12249  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-totbnd 37762  df-bnd 37773
This theorem is referenced by:  equivbnd2  37786  prdsbnd2  37789  cntotbnd  37790  cnpwstotbnd  37791
  Copyright terms: Public domain W3C validator