MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprod2d Structured version   Visualization version   GIF version

Theorem fprod2d 14997
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d 14790. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fprod2d.2 (𝜑𝐴 ∈ Fin)
fprod2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fprod2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprod2d (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑧   𝐵,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗,𝑧,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐷(𝑧)

Proof of Theorem fprod2d
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3785 . 2 𝐴𝐴
2 fprod2d.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3788 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 prodeq1 14925 . . . . . . 7 (𝑤 = ∅ → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶)
5 iuneq1 4692 . . . . . . . . 9 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
6 0iun 4735 . . . . . . . . 9 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
75, 6syl6eq 2815 . . . . . . . 8 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = ∅)
87prodeq1d 14937 . . . . . . 7 (𝑤 = ∅ → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 ∈ ∅ 𝐷)
94, 8eqeq12d 2780 . . . . . 6 (𝑤 = ∅ → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))
103, 9imbi12d 335 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷)))
1110imbi2d 331 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))))
12 sseq1 3788 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
13 prodeq1 14925 . . . . . . 7 (𝑤 = 𝑥 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗𝑥𝑘𝐵 𝐶)
14 iuneq1 4692 . . . . . . . 8 (𝑤 = 𝑥 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝑥 ({𝑗} × 𝐵))
1514prodeq1d 14937 . . . . . . 7 (𝑤 = 𝑥 → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
1613, 15eqeq12d 2780 . . . . . 6 (𝑤 = 𝑥 → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
1712, 16imbi12d 335 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)))
1817imbi2d 331 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))))
19 sseq1 3788 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
20 prodeq1 14925 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶)
21 iuneq1 4692 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵))
2221prodeq1d 14937 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
2320, 22eqeq12d 2780 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))
2419, 23imbi12d 335 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
2524imbi2d 331 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
26 sseq1 3788 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
27 prodeq1 14925 . . . . . . 7 (𝑤 = 𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗𝐴𝑘𝐵 𝐶)
28 iuneq1 4692 . . . . . . . 8 (𝑤 = 𝐴 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
2928prodeq1d 14937 . . . . . . 7 (𝑤 = 𝐴 → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
3027, 29eqeq12d 2780 . . . . . 6 (𝑤 = 𝐴 → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
3126, 30imbi12d 335 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
3231imbi2d 331 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))))
33 prod0 14959 . . . . . 6 𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = 1
34 prod0 14959 . . . . . 6 𝑧 ∈ ∅ 𝐷 = 1
3533, 34eqtr4i 2790 . . . . 5 𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷
36352a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))
37 ssun1 3940 . . . . . . . . . 10 𝑥 ⊆ (𝑥 ∪ {𝑦})
38 sstr 3771 . . . . . . . . . 10 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
3937, 38mpan 681 . . . . . . . . 9 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4039imim1i 63 . . . . . . . 8 ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
41 fprod2d.1 . . . . . . . . . . 11 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
422ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
43 fprod2d.3 . . . . . . . . . . . . 13 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
4443adantlr 706 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
4544adantlr 706 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
46 fprod2d.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4746adantlr 706 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4847adantlr 706 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
49 simplr 785 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
50 simpr 477 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
51 biid 252 . . . . . . . . . . 11 (∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
5241, 42, 45, 48, 49, 50, 51fprod2dlem 14996 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
5352exp31 410 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5453a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑦𝑥) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5540, 54syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5655expcom 402 . . . . . 6 𝑦𝑥 → (𝜑 → ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5756a2d 29 . . . . 5 𝑦𝑥 → ((𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5857adantl 473 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5911, 18, 25, 32, 36, 58findcard2s 8410 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
602, 59mpcom 38 . 2 (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
611, 60mpi 20 1 (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  cun 3732  wss 3734  c0 4081  {csn 4336  cop 4342   ciun 4678   × cxp 5277  Fincfn 8162  cc 10189  1c1 10192  cprod 14921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-oadd 7770  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-sup 8557  df-oi 8624  df-card 9018  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-fz 12537  df-fzo 12677  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-prod 14922
This theorem is referenced by:  fprodxp  14998  fprodcom2  15000
  Copyright terms: Public domain W3C validator