MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprod2d Structured version   Visualization version   GIF version

Theorem fprod2d 15888
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d 15678. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fprod2d.2 (𝜑𝐴 ∈ Fin)
fprod2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fprod2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprod2d (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑧   𝐷,𝑗,𝑘   𝐵,𝑘,𝑧   𝑧,𝐶   𝜑,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐷(𝑧)

Proof of Theorem fprod2d
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3958 . 2 𝐴𝐴
2 fprod2d.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3961 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 prodeq1 15814 . . . . . . 7 (𝑤 = ∅ → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶)
5 iuneq1 4958 . . . . . . . . 9 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
6 0iun 5012 . . . . . . . . 9 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
75, 6eqtrdi 2780 . . . . . . . 8 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = ∅)
87prodeq1d 15827 . . . . . . 7 (𝑤 = ∅ → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 ∈ ∅ 𝐷)
94, 8eqeq12d 2745 . . . . . 6 (𝑤 = ∅ → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))
103, 9imbi12d 344 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷)))
1110imbi2d 340 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))))
12 sseq1 3961 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
13 prodeq1 15814 . . . . . . 7 (𝑤 = 𝑥 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗𝑥𝑘𝐵 𝐶)
14 iuneq1 4958 . . . . . . . 8 (𝑤 = 𝑥 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝑥 ({𝑗} × 𝐵))
1514prodeq1d 15827 . . . . . . 7 (𝑤 = 𝑥 → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
1613, 15eqeq12d 2745 . . . . . 6 (𝑤 = 𝑥 → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
1712, 16imbi12d 344 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)))
1817imbi2d 340 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))))
19 sseq1 3961 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
20 prodeq1 15814 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶)
21 iuneq1 4958 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵))
2221prodeq1d 15827 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
2320, 22eqeq12d 2745 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))
2419, 23imbi12d 344 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
2524imbi2d 340 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
26 sseq1 3961 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
27 prodeq1 15814 . . . . . . 7 (𝑤 = 𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗𝐴𝑘𝐵 𝐶)
28 iuneq1 4958 . . . . . . . 8 (𝑤 = 𝐴 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
2928prodeq1d 15827 . . . . . . 7 (𝑤 = 𝐴 → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
3027, 29eqeq12d 2745 . . . . . 6 (𝑤 = 𝐴 → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
3126, 30imbi12d 344 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
3231imbi2d 340 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))))
33 prod0 15850 . . . . . 6 𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = 1
34 prod0 15850 . . . . . 6 𝑧 ∈ ∅ 𝐷 = 1
3533, 34eqtr4i 2755 . . . . 5 𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷
36352a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))
37 ssun1 4129 . . . . . . . . . 10 𝑥 ⊆ (𝑥 ∪ {𝑦})
38 sstr 3944 . . . . . . . . . 10 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
3937, 38mpan 690 . . . . . . . . 9 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4039imim1i 63 . . . . . . . 8 ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
41 fprod2d.1 . . . . . . . . . . 11 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
422ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
43 fprod2d.3 . . . . . . . . . . . 12 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
4443ad4ant14 752 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
45 fprod2d.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4645ad4ant14 752 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
47 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
48 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
49 biid 261 . . . . . . . . . . 11 (∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
5041, 42, 44, 46, 47, 48, 49fprod2dlem 15887 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
5150exp31 419 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5251a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑦𝑥) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5340, 52syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5453expcom 413 . . . . . 6 𝑦𝑥 → (𝜑 → ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5554a2d 29 . . . . 5 𝑦𝑥 → ((𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5655adantl 481 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5711, 18, 25, 32, 36, 56findcard2s 9079 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
582, 57mpcom 38 . 2 (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
591, 58mpi 20 1 (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3901  wss 3903  c0 4284  {csn 4577  cop 4583   ciun 4941   × cxp 5617  Fincfn 8872  cc 11007  1c1 11010  cprod 15810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811
This theorem is referenced by:  fprodxp  15889  fprodcom2  15891
  Copyright terms: Public domain W3C validator