MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum2d Structured version   Visualization version   GIF version

Theorem fsum2d 15697
Description: Write a double sum as a sum over a two-dimensional region. Note that 𝐵(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
fsum2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fsum2d.2 (𝜑𝐴 ∈ Fin)
fsum2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fsum2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsum2d (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝑗,𝑘,𝑧,𝐴   𝐵,𝑘,𝑧   𝐷,𝑗,𝑘   𝑧,𝐶   𝜑,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐷(𝑧)

Proof of Theorem fsum2d
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3960 . 2 𝐴𝐴
2 fsum2d.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3963 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 15615 . . . . . . 7 (𝑤 = ∅ → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶)
5 iuneq1 4961 . . . . . . . 8 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
65sumeq1d 15626 . . . . . . 7 (𝑤 = ∅ → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)
74, 6eqeq12d 2745 . . . . . 6 (𝑤 = ∅ → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
83, 7imbi12d 344 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)))
98imbi2d 340 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))))
10 sseq1 3963 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 15615 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝑥 Σ𝑘𝐵 𝐶)
12 iuneq1 4961 . . . . . . . 8 (𝑤 = 𝑥 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝑥 ({𝑗} × 𝐵))
1312sumeq1d 15626 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
1411, 13eqeq12d 2745 . . . . . 6 (𝑤 = 𝑥 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
1510, 14imbi12d 344 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)))
1615imbi2d 340 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))))
17 sseq1 3963 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 15615 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶)
19 iuneq1 4961 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵))
2019sumeq1d 15626 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
2118, 20eqeq12d 2745 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))
2217, 21imbi12d 344 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
2322imbi2d 340 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
24 sseq1 3963 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 15615 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝐴 Σ𝑘𝐵 𝐶)
26 iuneq1 4961 . . . . . . . 8 (𝑤 = 𝐴 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
2726sumeq1d 15626 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
2825, 27eqeq12d 2745 . . . . . 6 (𝑤 = 𝐴 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
2924, 28imbi12d 344 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
3029imbi2d 340 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))))
31 sum0 15647 . . . . . 6 Σ𝑧 ∈ ∅ 𝐷 = 0
32 0iun 5015 . . . . . . 7 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
3332sumeq1i 15623 . . . . . 6 Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∅ 𝐷
34 sum0 15647 . . . . . 6 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3531, 33, 343eqtr4ri 2763 . . . . 5 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷
36352a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
37 ssun1 4131 . . . . . . . . . 10 𝑥 ⊆ (𝑥 ∪ {𝑦})
38 sstr 3946 . . . . . . . . . 10 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
3937, 38mpan 690 . . . . . . . . 9 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4039imim1i 63 . . . . . . . 8 ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
41 fsum2d.1 . . . . . . . . . . 11 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
42 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
4342, 2syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
44 fsum2d.3 . . . . . . . . . . . 12 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
4542, 44sylan 580 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
46 fsum2d.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4742, 46sylan 580 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
48 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
49 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
50 biid 261 . . . . . . . . . . 11 𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
5141, 43, 45, 47, 48, 49, 50fsum2dlem 15696 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
5251exp31 419 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5352a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑦𝑥) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5440, 53syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5554expcom 413 . . . . . 6 𝑦𝑥 → (𝜑 → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5655a2d 29 . . . . 5 𝑦𝑥 → ((𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5756adantl 481 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
589, 16, 23, 30, 36, 57findcard2s 9089 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
592, 58mpcom 38 . 2 (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
601, 59mpi 20 1 (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3903  wss 3905  c0 4286  {csn 4579  cop 4585   ciun 4944   × cxp 5621  Fincfn 8879  cc 11026  0cc0 11028  Σcsu 15612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-sum 15613
This theorem is referenced by:  fsumxp  15698  fsumcom2  15700  ovoliunlem1  25420  fsumvma  27141  fsumiunle  32793  eulerpartlemgs2  34367  dvnprodlem2  45948
  Copyright terms: Public domain W3C validator