MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum2d Structured version   Visualization version   GIF version

Theorem fsum2d 14877
Description: Write a double sum as a sum over a two-dimensional region. Note that 𝐵(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
fsum2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fsum2d.2 (𝜑𝐴 ∈ Fin)
fsum2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fsum2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsum2d (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝑗,𝑘,𝑧,𝐴   𝐵,𝑘,𝑧   𝐷,𝑗,𝑘   𝑧,𝐶   𝜑,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐷(𝑧)

Proof of Theorem fsum2d
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3848 . 2 𝐴𝐴
2 fsum2d.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3851 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 14796 . . . . . . 7 (𝑤 = ∅ → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶)
5 iuneq1 4754 . . . . . . . 8 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
65sumeq1d 14808 . . . . . . 7 (𝑤 = ∅ → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)
74, 6eqeq12d 2840 . . . . . 6 (𝑤 = ∅ → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
83, 7imbi12d 336 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)))
98imbi2d 332 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))))
10 sseq1 3851 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 14796 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝑥 Σ𝑘𝐵 𝐶)
12 iuneq1 4754 . . . . . . . 8 (𝑤 = 𝑥 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝑥 ({𝑗} × 𝐵))
1312sumeq1d 14808 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
1411, 13eqeq12d 2840 . . . . . 6 (𝑤 = 𝑥 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
1510, 14imbi12d 336 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)))
1615imbi2d 332 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))))
17 sseq1 3851 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 14796 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶)
19 iuneq1 4754 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵))
2019sumeq1d 14808 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
2118, 20eqeq12d 2840 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))
2217, 21imbi12d 336 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
2322imbi2d 332 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
24 sseq1 3851 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 14796 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝐴 Σ𝑘𝐵 𝐶)
26 iuneq1 4754 . . . . . . . 8 (𝑤 = 𝐴 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
2726sumeq1d 14808 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
2825, 27eqeq12d 2840 . . . . . 6 (𝑤 = 𝐴 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
2924, 28imbi12d 336 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
3029imbi2d 332 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))))
31 sum0 14829 . . . . . 6 Σ𝑧 ∈ ∅ 𝐷 = 0
32 0iun 4797 . . . . . . 7 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
3332sumeq1i 14805 . . . . . 6 Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∅ 𝐷
34 sum0 14829 . . . . . 6 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3531, 33, 343eqtr4ri 2860 . . . . 5 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷
36352a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
37 ssun1 4003 . . . . . . . . . 10 𝑥 ⊆ (𝑥 ∪ {𝑦})
38 sstr 3835 . . . . . . . . . 10 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
3937, 38mpan 683 . . . . . . . . 9 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4039imim1i 63 . . . . . . . 8 ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
41 fsum2d.1 . . . . . . . . . . 11 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
42 simpll 785 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
4342, 2syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
44 fsum2d.3 . . . . . . . . . . . 12 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
4542, 44sylan 577 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
46 fsum2d.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4742, 46sylan 577 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
48 simplr 787 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
49 simpr 479 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
50 biid 253 . . . . . . . . . . 11 𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
5141, 43, 45, 47, 48, 49, 50fsum2dlem 14876 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
5251exp31 412 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5352a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑦𝑥) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5440, 53syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5554expcom 404 . . . . . 6 𝑦𝑥 → (𝜑 → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5655a2d 29 . . . . 5 𝑦𝑥 → ((𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5756adantl 475 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
589, 16, 23, 30, 36, 57findcard2s 8470 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
592, 58mpcom 38 . 2 (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
601, 59mpi 20 1 (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1658  wcel 2166  cun 3796  wss 3798  c0 4144  {csn 4397  cop 4403   ciun 4740   × cxp 5340  Fincfn 8222  cc 10250  0cc0 10252  Σcsu 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794
This theorem is referenced by:  fsumxp  14878  fsumcom2  14880  ovoliunlem1  23668  fsumvma  25351  fsumiunle  30122  eulerpartlemgs2  30987  dvnprodlem2  40957
  Copyright terms: Public domain W3C validator