| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1onnALT | Structured version Visualization version GIF version | ||
| Description: Shorter proof of 1onn 8558 using Peano's postulates that depends on ax-un 7671. (Contributed by NM, 29-Oct-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1onnALT | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8388 | . 2 ⊢ 1o = suc ∅ | |
| 2 | peano1 7822 | . . 3 ⊢ ∅ ∈ ω | |
| 3 | peano2 7823 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4284 suc csuc 6309 ωcom 7799 1oc1o 8381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-om 7800 df-1o 8388 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |