![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2clwwlkel | Structured version Visualization version GIF version |
Description: Characterization of an element of the value of operation πΆ, i.e., of a word being a double loop of length π on vertex π. (Contributed by Alexander van der Vekens, 24-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 20-Apr-2022.) |
Ref | Expression |
---|---|
2clwwlk.c | β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) |
Ref | Expression |
---|---|
2clwwlkel | β’ ((π β π β§ π β (β€β₯β2)) β (π β (ππΆπ) β (π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2clwwlk.c | . . . 4 β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) | |
2 | 1 | 2clwwlk 29597 | . . 3 β’ ((π β π β§ π β (β€β₯β2)) β (ππΆπ) = {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π}) |
3 | 2 | eleq2d 2819 | . 2 β’ ((π β π β§ π β (β€β₯β2)) β (π β (ππΆπ) β π β {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π})) |
4 | fveq1 6890 | . . . 4 β’ (π€ = π β (π€β(π β 2)) = (πβ(π β 2))) | |
5 | 4 | eqeq1d 2734 | . . 3 β’ (π€ = π β ((π€β(π β 2)) = π β (πβ(π β 2)) = π)) |
6 | 5 | elrab 3683 | . 2 β’ (π β {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π} β (π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = π)) |
7 | 3, 6 | bitrdi 286 | 1 β’ ((π β π β§ π β (β€β₯β2)) β (π β (ππΆπ) β (π β (π(ClWWalksNOnβπΊ)π) β§ (πβ(π β 2)) = π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 βcfv 6543 (class class class)co 7408 β cmpo 7410 β cmin 11443 2c2 12266 β€β₯cuz 12821 ClWWalksNOncclwwlknon 29337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 |
This theorem is referenced by: 2clwwlk2clwwlk 29600 numclwwlk1lem2f1 29607 |
Copyright terms: Public domain | W3C validator |