MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlkel Structured version   Visualization version   GIF version

Theorem 2clwwlkel 30319
Description: Characterization of an element of the value of operation 𝐶, i.e., of a word being a double loop of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 24-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 20-Apr-2022.)
Hypothesis
Ref Expression
2clwwlk.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
Assertion
Ref Expression
2clwwlkel ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑊
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑉(𝑤)   𝑊(𝑣,𝑛)

Proof of Theorem 2clwwlkel
StepHypRef Expression
1 2clwwlk.c . . . 4 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
212clwwlk 30317 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
32eleq2d 2815 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
4 fveq1 6816 . . . 4 (𝑤 = 𝑊 → (𝑤‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2)))
54eqeq1d 2732 . . 3 (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑊‘(𝑁 − 2)) = 𝑋))
65elrab 3645 . 2 (𝑊 ∈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))
73, 6bitrdi 287 1 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  {crab 3393  cfv 6477  (class class class)co 7341  cmpo 7343  cmin 11336  2c2 12172  cuz 12724  ClWWalksNOncclwwlknon 30057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346
This theorem is referenced by:  2clwwlk2clwwlk  30320  numclwwlk1lem2f1  30327
  Copyright terms: Public domain W3C validator