| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2clwwlk | Structured version Visualization version GIF version | ||
| Description: Value of operation 𝐶, mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v" according to definition 6 in [Huneke] p. 2. Such closed walks are "double loops" consisting of a closed (n-2)-walk v = v(0) ... v(n-2) = v and a closed 2-walk v = v(n-2) v(n-1) v(n) = v, see 2clwwlk2clwwlk 30330. (𝑋𝐶𝑁) is called the "set of double loops of length 𝑁 on vertex 𝑋 " in the following. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 20-Apr-2022.) |
| Ref | Expression |
|---|---|
| 2clwwlk.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
| Ref | Expression |
|---|---|
| 2clwwlk | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7355 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑣(ClWWalksNOn‘𝐺)𝑛) = (𝑋(ClWWalksNOn‘𝐺)𝑁)) | |
| 2 | fvoveq1 7369 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2))) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2))) |
| 4 | simpl 482 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → 𝑣 = 𝑋) | |
| 5 | 3, 4 | eqeq12d 2747 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → ((𝑤‘(𝑛 − 2)) = 𝑣 ↔ (𝑤‘(𝑁 − 2)) = 𝑋)) |
| 6 | 1, 5 | rabeqbidv 3413 | . 2 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) |
| 7 | 2clwwlk.c | . 2 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
| 8 | ovex 7379 | . . 3 ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ V | |
| 9 | 8 | rabex 5275 | . 2 ⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ V |
| 10 | 6, 7, 9 | ovmpoa 7501 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 − cmin 11344 2c2 12180 ℤ≥cuz 12732 ClWWalksNOncclwwlknon 30067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: 2clwwlk2 30328 2clwwlkel 30329 extwwlkfab 30332 numclwwlk3lem2lem 30363 numclwwlk3lem2 30364 |
| Copyright terms: Public domain | W3C validator |