Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2clwwlk | Structured version Visualization version GIF version |
Description: Value of operation 𝐶, mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v" according to definition 6 in [Huneke] p. 2. Such closed walks are "double loops" consisting of a closed (n-2)-walk v = v(0) ... v(n-2) = v and a closed 2-walk v = v(n-2) v(n-1) v(n) = v, see 2clwwlk2clwwlk 28700. (𝑋𝐶𝑁) is called the "set of double loops of length 𝑁 on vertex 𝑋 " in the following. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 20-Apr-2022.) |
Ref | Expression |
---|---|
2clwwlk.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
Ref | Expression |
---|---|
2clwwlk | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7277 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑣(ClWWalksNOn‘𝐺)𝑛) = (𝑋(ClWWalksNOn‘𝐺)𝑁)) | |
2 | fvoveq1 7291 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2))) | |
3 | 2 | adantl 482 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2))) |
4 | simpl 483 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → 𝑣 = 𝑋) | |
5 | 3, 4 | eqeq12d 2754 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → ((𝑤‘(𝑛 − 2)) = 𝑣 ↔ (𝑤‘(𝑁 − 2)) = 𝑋)) |
6 | 1, 5 | rabeqbidv 3418 | . 2 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) |
7 | 2clwwlk.c | . 2 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
8 | ovex 7301 | . . 3 ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ V | |
9 | 8 | rabex 5255 | . 2 ⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ V |
10 | 6, 7, 9 | ovmpoa 7419 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ‘cfv 6427 (class class class)co 7268 ∈ cmpo 7270 − cmin 11193 2c2 12016 ℤ≥cuz 12570 ClWWalksNOncclwwlknon 28437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-iota 6385 df-fun 6429 df-fv 6435 df-ov 7271 df-oprab 7272 df-mpo 7273 |
This theorem is referenced by: 2clwwlk2 28698 2clwwlkel 28699 extwwlkfab 28702 numclwwlk3lem2lem 28733 numclwwlk3lem2 28734 |
Copyright terms: Public domain | W3C validator |