MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlk Structured version   Visualization version   GIF version

Theorem 2clwwlk 29589
Description: Value of operation 𝐢, mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v" according to definition 6 in [Huneke] p. 2. Such closed walks are "double loops" consisting of a closed (n-2)-walk v = v(0) ... v(n-2) = v and a closed 2-walk v = v(n-2) v(n-1) v(n) = v, see 2clwwlk2clwwlk 29592. (𝑋𝐢𝑁) is called the "set of double loops of length 𝑁 on vertex 𝑋 " in the following. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 20-Apr-2022.)
Hypothesis
Ref Expression
2clwwlk.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
Assertion
Ref Expression
2clwwlk ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑋𝐢𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑀
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝑉(𝑀)

Proof of Theorem 2clwwlk
StepHypRef Expression
1 oveq12 7414 . . 3 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) = (𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
2 fvoveq1 7428 . . . . 5 (𝑛 = 𝑁 β†’ (π‘€β€˜(𝑛 βˆ’ 2)) = (π‘€β€˜(𝑁 βˆ’ 2)))
32adantl 482 . . . 4 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ (π‘€β€˜(𝑛 βˆ’ 2)) = (π‘€β€˜(𝑁 βˆ’ 2)))
4 simpl 483 . . . 4 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ 𝑣 = 𝑋)
53, 4eqeq12d 2748 . . 3 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ ((π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣 ↔ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋))
61, 5rabeqbidv 3449 . 2 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣} = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
7 2clwwlk.c . 2 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
8 ovex 7438 . . 3 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ V
98rabex 5331 . 2 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} ∈ V
106, 7, 9ovmpoa 7559 1 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑋𝐢𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407   βˆ’ cmin 11440  2c2 12263  β„€β‰₯cuz 12818  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  2clwwlk2  29590  2clwwlkel  29591  extwwlkfab  29594  numclwwlk3lem2lem  29625  numclwwlk3lem2  29626
  Copyright terms: Public domain W3C validator