![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2clwwlk | Structured version Visualization version GIF version |
Description: Value of operation πΆ, mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v" according to definition 6 in [Huneke] p. 2. Such closed walks are "double loops" consisting of a closed (n-2)-walk v = v(0) ... v(n-2) = v and a closed 2-walk v = v(n-2) v(n-1) v(n) = v, see 2clwwlk2clwwlk 29336. (ππΆπ) is called the "set of double loops of length π on vertex π " in the following. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 20-Apr-2022.) |
Ref | Expression |
---|---|
2clwwlk.c | β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) |
Ref | Expression |
---|---|
2clwwlk | β’ ((π β π β§ π β (β€β₯β2)) β (ππΆπ) = {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7371 | . . 3 β’ ((π£ = π β§ π = π) β (π£(ClWWalksNOnβπΊ)π) = (π(ClWWalksNOnβπΊ)π)) | |
2 | fvoveq1 7385 | . . . . 5 β’ (π = π β (π€β(π β 2)) = (π€β(π β 2))) | |
3 | 2 | adantl 483 | . . . 4 β’ ((π£ = π β§ π = π) β (π€β(π β 2)) = (π€β(π β 2))) |
4 | simpl 484 | . . . 4 β’ ((π£ = π β§ π = π) β π£ = π) | |
5 | 3, 4 | eqeq12d 2753 | . . 3 β’ ((π£ = π β§ π = π) β ((π€β(π β 2)) = π£ β (π€β(π β 2)) = π)) |
6 | 1, 5 | rabeqbidv 3427 | . 2 β’ ((π£ = π β§ π = π) β {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£} = {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π}) |
7 | 2clwwlk.c | . 2 β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) | |
8 | ovex 7395 | . . 3 β’ (π(ClWWalksNOnβπΊ)π) β V | |
9 | 8 | rabex 5294 | . 2 β’ {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π} β V |
10 | 6, 7, 9 | ovmpoa 7515 | 1 β’ ((π β π β§ π β (β€β₯β2)) β (ππΆπ) = {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 {crab 3410 βcfv 6501 (class class class)co 7362 β cmpo 7364 β cmin 11392 2c2 12215 β€β₯cuz 12770 ClWWalksNOncclwwlknon 29073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6453 df-fun 6503 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 |
This theorem is referenced by: 2clwwlk2 29334 2clwwlkel 29335 extwwlkfab 29338 numclwwlk3lem2lem 29369 numclwwlk3lem2 29370 |
Copyright terms: Public domain | W3C validator |