|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2sqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 2sq 27475. (Contributed by Mario Carneiro, 19-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| 2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | 
| Ref | Expression | 
|---|---|
| 2sqlem1 | ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2sq.1 | . . 3 ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
| 2 | 1 | eleq2i 2832 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))) | 
| 3 | fveq2 6905 | . . . . 5 ⊢ (𝑤 = 𝑥 → (abs‘𝑤) = (abs‘𝑥)) | |
| 4 | 3 | oveq1d 7447 | . . . 4 ⊢ (𝑤 = 𝑥 → ((abs‘𝑤)↑2) = ((abs‘𝑥)↑2)) | 
| 5 | 4 | cbvmptv 5254 | . . 3 ⊢ (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = (𝑥 ∈ ℤ[i] ↦ ((abs‘𝑥)↑2)) | 
| 6 | ovex 7465 | . . 3 ⊢ ((abs‘𝑥)↑2) ∈ V | |
| 7 | 5, 6 | elrnmpti 5972 | . 2 ⊢ (𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) | 
| 8 | 2, 7 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ↦ cmpt 5224 ran crn 5685 ‘cfv 6560 (class class class)co 7432 2c2 12322 ↑cexp 14103 abscabs 15274 ℤ[i]cgz 16968 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-cnv 5692 df-dm 5694 df-rn 5695 df-iota 6513 df-fv 6568 df-ov 7435 | 
| This theorem is referenced by: 2sqlem2 27463 mul2sq 27464 2sqlem3 27465 2sqlem9 27472 2sqlem10 27473 | 
| Copyright terms: Public domain | W3C validator |