Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem1 Structured version   Visualization version   GIF version

Theorem 2sqlem1 25594
 Description: Lemma for 2sq 25607. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
2sqlem1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
Distinct variable groups:   𝑥,𝑤   𝑥,𝐴   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem1
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
21eleq2i 2850 . 2 (𝐴𝑆𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)))
3 fveq2 6446 . . . . 5 (𝑤 = 𝑥 → (abs‘𝑤) = (abs‘𝑥))
43oveq1d 6937 . . . 4 (𝑤 = 𝑥 → ((abs‘𝑤)↑2) = ((abs‘𝑥)↑2))
54cbvmptv 4985 . . 3 (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = (𝑥 ∈ ℤ[i] ↦ ((abs‘𝑥)↑2))
6 ovex 6954 . . 3 ((abs‘𝑥)↑2) ∈ V
75, 6elrnmpti 5622 . 2 (𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
82, 7bitri 267 1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   = wceq 1601   ∈ wcel 2106  ∃wrex 3090   ↦ cmpt 4965  ran crn 5356  ‘cfv 6135  (class class class)co 6922  2c2 11430  ↑cexp 13178  abscabs 14381  ℤ[i]cgz 16037 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-cnv 5363  df-dm 5365  df-rn 5366  df-iota 6099  df-fv 6143  df-ov 6925 This theorem is referenced by:  2sqlem2  25595  mul2sq  25596  2sqlem3  25597  2sqlem9  25604  2sqlem10  25605
 Copyright terms: Public domain W3C validator