MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem1 Structured version   Visualization version   GIF version

Theorem 2sqlem1 27462
Description: Lemma for 2sq 27475. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
2sqlem1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
Distinct variable groups:   𝑥,𝑤   𝑥,𝐴   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem1
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
21eleq2i 2832 . 2 (𝐴𝑆𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)))
3 fveq2 6905 . . . . 5 (𝑤 = 𝑥 → (abs‘𝑤) = (abs‘𝑥))
43oveq1d 7447 . . . 4 (𝑤 = 𝑥 → ((abs‘𝑤)↑2) = ((abs‘𝑥)↑2))
54cbvmptv 5254 . . 3 (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = (𝑥 ∈ ℤ[i] ↦ ((abs‘𝑥)↑2))
6 ovex 7465 . . 3 ((abs‘𝑥)↑2) ∈ V
75, 6elrnmpti 5972 . 2 (𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
82, 7bitri 275 1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  wrex 3069  cmpt 5224  ran crn 5685  cfv 6560  (class class class)co 7432  2c2 12322  cexp 14103  abscabs 15274  ℤ[i]cgz 16968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-cnv 5692  df-dm 5694  df-rn 5695  df-iota 6513  df-fv 6568  df-ov 7435
This theorem is referenced by:  2sqlem2  27463  mul2sq  27464  2sqlem3  27465  2sqlem9  27472  2sqlem10  27473
  Copyright terms: Public domain W3C validator