| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 2sq 27348. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| Ref | Expression |
|---|---|
| 2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
| Ref | Expression |
|---|---|
| 2sqlem1 | ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sq.1 | . . 3 ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))) |
| 3 | fveq2 6865 | . . . . 5 ⊢ (𝑤 = 𝑥 → (abs‘𝑤) = (abs‘𝑥)) | |
| 4 | 3 | oveq1d 7409 | . . . 4 ⊢ (𝑤 = 𝑥 → ((abs‘𝑤)↑2) = ((abs‘𝑥)↑2)) |
| 5 | 4 | cbvmptv 5219 | . . 3 ⊢ (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = (𝑥 ∈ ℤ[i] ↦ ((abs‘𝑥)↑2)) |
| 6 | ovex 7427 | . . 3 ⊢ ((abs‘𝑥)↑2) ∈ V | |
| 7 | 5, 6 | elrnmpti 5934 | . 2 ⊢ (𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
| 8 | 2, 7 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3055 ↦ cmpt 5196 ran crn 5647 ‘cfv 6519 (class class class)co 7394 2c2 12252 ↑cexp 14036 abscabs 15210 ℤ[i]cgz 16906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-cnv 5654 df-dm 5656 df-rn 5657 df-iota 6472 df-fv 6527 df-ov 7397 |
| This theorem is referenced by: 2sqlem2 27336 mul2sq 27337 2sqlem3 27338 2sqlem9 27345 2sqlem10 27346 |
| Copyright terms: Public domain | W3C validator |