Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sqlem1 | Structured version Visualization version GIF version |
Description: Lemma for 2sq 26578. (Contributed by Mario Carneiro, 19-Jun-2015.) |
Ref | Expression |
---|---|
2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
Ref | Expression |
---|---|
2sqlem1 | ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sq.1 | . . 3 ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))) |
3 | fveq2 6774 | . . . . 5 ⊢ (𝑤 = 𝑥 → (abs‘𝑤) = (abs‘𝑥)) | |
4 | 3 | oveq1d 7290 | . . . 4 ⊢ (𝑤 = 𝑥 → ((abs‘𝑤)↑2) = ((abs‘𝑥)↑2)) |
5 | 4 | cbvmptv 5187 | . . 3 ⊢ (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = (𝑥 ∈ ℤ[i] ↦ ((abs‘𝑥)↑2)) |
6 | ovex 7308 | . . 3 ⊢ ((abs‘𝑥)↑2) ∈ V | |
7 | 5, 6 | elrnmpti 5869 | . 2 ⊢ (𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
8 | 2, 7 | bitri 274 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 2c2 12028 ↑cexp 13782 abscabs 14945 ℤ[i]cgz 16630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: 2sqlem2 26566 mul2sq 26567 2sqlem3 26568 2sqlem9 26575 2sqlem10 26576 |
Copyright terms: Public domain | W3C validator |