Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sqlem1 | Structured version Visualization version GIF version |
Description: Lemma for 2sq 26483. (Contributed by Mario Carneiro, 19-Jun-2015.) |
Ref | Expression |
---|---|
2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
Ref | Expression |
---|---|
2sqlem1 | ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sq.1 | . . 3 ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))) |
3 | fveq2 6756 | . . . . 5 ⊢ (𝑤 = 𝑥 → (abs‘𝑤) = (abs‘𝑥)) | |
4 | 3 | oveq1d 7270 | . . . 4 ⊢ (𝑤 = 𝑥 → ((abs‘𝑤)↑2) = ((abs‘𝑥)↑2)) |
5 | 4 | cbvmptv 5183 | . . 3 ⊢ (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = (𝑥 ∈ ℤ[i] ↦ ((abs‘𝑥)↑2)) |
6 | ovex 7288 | . . 3 ⊢ ((abs‘𝑥)↑2) ∈ V | |
7 | 5, 6 | elrnmpti 5858 | . 2 ⊢ (𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
8 | 2, 7 | bitri 274 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 2c2 11958 ↑cexp 13710 abscabs 14873 ℤ[i]cgz 16558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: 2sqlem2 26471 mul2sq 26472 2sqlem3 26473 2sqlem9 26480 2sqlem10 26481 |
Copyright terms: Public domain | W3C validator |