| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 2sq 27341. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| Ref | Expression |
|---|---|
| 2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
| Ref | Expression |
|---|---|
| 2sqlem1 | ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sq.1 | . . 3 ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))) |
| 3 | fveq2 6858 | . . . . 5 ⊢ (𝑤 = 𝑥 → (abs‘𝑤) = (abs‘𝑥)) | |
| 4 | 3 | oveq1d 7402 | . . . 4 ⊢ (𝑤 = 𝑥 → ((abs‘𝑤)↑2) = ((abs‘𝑥)↑2)) |
| 5 | 4 | cbvmptv 5211 | . . 3 ⊢ (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = (𝑥 ∈ ℤ[i] ↦ ((abs‘𝑥)↑2)) |
| 6 | ovex 7420 | . . 3 ⊢ ((abs‘𝑥)↑2) ∈ V | |
| 7 | 5, 6 | elrnmpti 5926 | . 2 ⊢ (𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
| 8 | 2, 7 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ↦ cmpt 5188 ran crn 5639 ‘cfv 6511 (class class class)co 7387 2c2 12241 ↑cexp 14026 abscabs 15200 ℤ[i]cgz 16900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-cnv 5646 df-dm 5648 df-rn 5649 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: 2sqlem2 27329 mul2sq 27330 2sqlem3 27331 2sqlem9 27338 2sqlem10 27339 |
| Copyright terms: Public domain | W3C validator |