| Step | Hyp | Ref
| Expression |
| 1 | | breq1 5122 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑏 ∥ 𝑎 ↔ 𝐵 ∥ 𝑎)) |
| 2 | | eleq1 2822 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆)) |
| 3 | 1, 2 | imbi12d 344 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ (𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆))) |
| 4 | 3 | ralbidv 3163 |
. . . 4
⊢ (𝑏 = 𝐵 → (∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑎 ∈ 𝑌 (𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆))) |
| 5 | | oveq2 7413 |
. . . . . 6
⊢ (𝑚 = 1 → (1...𝑚) = (1...1)) |
| 6 | 5 | raleqdv 3305 |
. . . . 5
⊢ (𝑚 = 1 → (∀𝑏 ∈ (1...𝑚)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ (1...1)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
| 7 | | oveq2 7413 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛)) |
| 8 | 7 | raleqdv 3305 |
. . . . 5
⊢ (𝑚 = 𝑛 → (∀𝑏 ∈ (1...𝑚)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
| 9 | | oveq2 7413 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (1...𝑚) = (1...(𝑛 + 1))) |
| 10 | 9 | raleqdv 3305 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (∀𝑏 ∈ (1...𝑚)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
| 11 | | oveq2 7413 |
. . . . . 6
⊢ (𝑚 = 𝐵 → (1...𝑚) = (1...𝐵)) |
| 12 | 11 | raleqdv 3305 |
. . . . 5
⊢ (𝑚 = 𝐵 → (∀𝑏 ∈ (1...𝑚)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ (1...𝐵)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
| 13 | | elfz1eq 13552 |
. . . . . . . . 9
⊢ (𝑏 ∈ (1...1) → 𝑏 = 1) |
| 14 | | 1z 12622 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
| 15 | | zgz 16953 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → 1 ∈ ℤ[i]) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ[i] |
| 17 | | sq1 14213 |
. . . . . . . . . . . 12
⊢
(1↑2) = 1 |
| 18 | 17 | eqcomi 2744 |
. . . . . . . . . . 11
⊢ 1 =
(1↑2) |
| 19 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → (abs‘𝑥) =
(abs‘1)) |
| 20 | | abs1 15316 |
. . . . . . . . . . . . . 14
⊢
(abs‘1) = 1 |
| 21 | 19, 20 | eqtrdi 2786 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (abs‘𝑥) = 1) |
| 22 | 21 | oveq1d 7420 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → ((abs‘𝑥)↑2) =
(1↑2)) |
| 23 | 22 | rspceeqv 3624 |
. . . . . . . . . . 11
⊢ ((1
∈ ℤ[i] ∧ 1 = (1↑2)) → ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2)) |
| 24 | 16, 18, 23 | mp2an 692 |
. . . . . . . . . 10
⊢
∃𝑥 ∈
ℤ[i] 1 = ((abs‘𝑥)↑2) |
| 25 | | 2sq.1 |
. . . . . . . . . . 11
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
| 26 | 25 | 2sqlem1 27380 |
. . . . . . . . . 10
⊢ (1 ∈
𝑆 ↔ ∃𝑥 ∈ ℤ[i] 1 =
((abs‘𝑥)↑2)) |
| 27 | 24, 26 | mpbir 231 |
. . . . . . . . 9
⊢ 1 ∈
𝑆 |
| 28 | 13, 27 | eqeltrdi 2842 |
. . . . . . . 8
⊢ (𝑏 ∈ (1...1) → 𝑏 ∈ 𝑆) |
| 29 | 28 | a1d 25 |
. . . . . . 7
⊢ (𝑏 ∈ (1...1) → (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
| 30 | 29 | ralrimivw 3136 |
. . . . . 6
⊢ (𝑏 ∈ (1...1) →
∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
| 31 | 30 | rgen 3053 |
. . . . 5
⊢
∀𝑏 ∈
(1...1)∀𝑎 ∈
𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) |
| 32 | | 2sqlem7.2 |
. . . . . . . . . . . . 13
⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
| 33 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
| 34 | | nncn 12248 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 35 | 34 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑛 ∈ ℂ) |
| 36 | | ax-1cn 11187 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
| 37 | | pncan 11488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 + 1)
− 1) = 𝑛) |
| 38 | 35, 36, 37 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ((𝑛 + 1) − 1) = 𝑛) |
| 39 | 38 | oveq2d 7421 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (1...((𝑛 + 1) − 1)) = (1...𝑛)) |
| 40 | 33, 39 | raleqtrrdv 3309 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...((𝑛 + 1) − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
| 41 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∥ 𝑚) |
| 42 | | peano2nn 12252 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
| 43 | 42 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ ℕ) |
| 44 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑚 ∈ 𝑌) |
| 45 | 25, 32, 40, 41, 43, 44 | 2sqlem9 27390 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ (𝑚 ∈ 𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ 𝑆) |
| 46 | 45 | expr 456 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) ∧ 𝑚 ∈ 𝑌) → ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)) |
| 47 | 46 | ralrimiva 3132 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧
∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) → ∀𝑚 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)) |
| 48 | 47 | ex 412 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → ∀𝑚 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))) |
| 49 | | breq2 5123 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑚 → ((𝑛 + 1) ∥ 𝑎 ↔ (𝑛 + 1) ∥ 𝑚)) |
| 50 | 49 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑚 → (((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))) |
| 51 | 50 | cbvralvw 3220 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ∀𝑚 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)) |
| 52 | 48, 51 | imbitrrdi 252 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → ∀𝑎 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆))) |
| 53 | | ovex 7438 |
. . . . . . . . 9
⊢ (𝑛 + 1) ∈ V |
| 54 | | breq1 5122 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑛 + 1) → (𝑏 ∥ 𝑎 ↔ (𝑛 + 1) ∥ 𝑎)) |
| 55 | | eleq1 2822 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑛 + 1) → (𝑏 ∈ 𝑆 ↔ (𝑛 + 1) ∈ 𝑆)) |
| 56 | 54, 55 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑛 + 1) → ((𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆))) |
| 57 | 56 | ralbidv 3163 |
. . . . . . . . 9
⊢ (𝑏 = (𝑛 + 1) → (∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑎 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆))) |
| 58 | 53, 57 | ralsn 4657 |
. . . . . . . 8
⊢
(∀𝑏 ∈
{(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑎 ∈ 𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)) |
| 59 | 52, 58 | imbitrrdi 252 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
| 60 | 59 | ancld 550 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → (∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)))) |
| 61 | | elnnuz 12896 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
| 62 | | fzsuc 13588 |
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)})) |
| 63 | 61, 62 | sylbi 217 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)})) |
| 64 | 63 | raleqdv 3305 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...(𝑛 + 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ ∀𝑏 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
| 65 | | ralunb 4172 |
. . . . . . 7
⊢
(∀𝑏 ∈
((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
| 66 | 64, 65 | bitrdi 287 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...(𝑛 + 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)))) |
| 67 | 60, 66 | sylibrd 259 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
(∀𝑏 ∈
(1...𝑛)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆))) |
| 68 | 6, 8, 10, 12, 31, 67 | nnind 12258 |
. . . 4
⊢ (𝐵 ∈ ℕ →
∀𝑏 ∈ (1...𝐵)∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
| 69 | | elfz1end 13571 |
. . . . 5
⊢ (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵)) |
| 70 | 69 | biimpi 216 |
. . . 4
⊢ (𝐵 ∈ ℕ → 𝐵 ∈ (1...𝐵)) |
| 71 | 4, 68, 70 | rspcdva 3602 |
. . 3
⊢ (𝐵 ∈ ℕ →
∀𝑎 ∈ 𝑌 (𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆)) |
| 72 | | breq2 5123 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝐵 ∥ 𝑎 ↔ 𝐵 ∥ 𝐴)) |
| 73 | 72 | imbi1d 341 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆) ↔ (𝐵 ∥ 𝐴 → 𝐵 ∈ 𝑆))) |
| 74 | 73 | rspcv 3597 |
. . 3
⊢ (𝐴 ∈ 𝑌 → (∀𝑎 ∈ 𝑌 (𝐵 ∥ 𝑎 → 𝐵 ∈ 𝑆) → (𝐵 ∥ 𝐴 → 𝐵 ∈ 𝑆))) |
| 75 | 71, 74 | syl5 34 |
. 2
⊢ (𝐴 ∈ 𝑌 → (𝐵 ∈ ℕ → (𝐵 ∥ 𝐴 → 𝐵 ∈ 𝑆))) |
| 76 | 75 | 3imp 1110 |
1
⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → 𝐵 ∈ 𝑆) |