MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem10 Structured version   Visualization version   GIF version

Theorem 2sqlem10 26779
Description: Lemma for 2sq 26781. Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
Assertion
Ref Expression
2sqlem10 ((𝐴𝑌𝐵 ∈ ℕ ∧ 𝐵𝐴) → 𝐵𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦,𝑧   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑤)   𝐵(𝑧,𝑤)   𝑆(𝑤)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem10
Dummy variables 𝑎 𝑏 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5109 . . . . . 6 (𝑏 = 𝐵 → (𝑏𝑎𝐵𝑎))
2 eleq1 2826 . . . . . 6 (𝑏 = 𝐵 → (𝑏𝑆𝐵𝑆))
31, 2imbi12d 345 . . . . 5 (𝑏 = 𝐵 → ((𝑏𝑎𝑏𝑆) ↔ (𝐵𝑎𝐵𝑆)))
43ralbidv 3175 . . . 4 (𝑏 = 𝐵 → (∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 (𝐵𝑎𝐵𝑆)))
5 oveq2 7366 . . . . . 6 (𝑚 = 1 → (1...𝑚) = (1...1))
65raleqdv 3314 . . . . 5 (𝑚 = 1 → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...1)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
7 oveq2 7366 . . . . . 6 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
87raleqdv 3314 . . . . 5 (𝑚 = 𝑛 → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
9 oveq2 7366 . . . . . 6 (𝑚 = (𝑛 + 1) → (1...𝑚) = (1...(𝑛 + 1)))
109raleqdv 3314 . . . . 5 (𝑚 = (𝑛 + 1) → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
11 oveq2 7366 . . . . . 6 (𝑚 = 𝐵 → (1...𝑚) = (1...𝐵))
1211raleqdv 3314 . . . . 5 (𝑚 = 𝐵 → (∀𝑏 ∈ (1...𝑚)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...𝐵)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
13 elfz1eq 13453 . . . . . . . . 9 (𝑏 ∈ (1...1) → 𝑏 = 1)
14 1z 12534 . . . . . . . . . . . 12 1 ∈ ℤ
15 zgz 16806 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ ℤ[i])
1614, 15ax-mp 5 . . . . . . . . . . 11 1 ∈ ℤ[i]
17 sq1 14100 . . . . . . . . . . . 12 (1↑2) = 1
1817eqcomi 2746 . . . . . . . . . . 11 1 = (1↑2)
19 fveq2 6843 . . . . . . . . . . . . . 14 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
20 abs1 15183 . . . . . . . . . . . . . 14 (abs‘1) = 1
2119, 20eqtrdi 2793 . . . . . . . . . . . . 13 (𝑥 = 1 → (abs‘𝑥) = 1)
2221oveq1d 7373 . . . . . . . . . . . 12 (𝑥 = 1 → ((abs‘𝑥)↑2) = (1↑2))
2322rspceeqv 3596 . . . . . . . . . . 11 ((1 ∈ ℤ[i] ∧ 1 = (1↑2)) → ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
2416, 18, 23mp2an 691 . . . . . . . . . 10 𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2)
25 2sq.1 . . . . . . . . . . 11 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
26252sqlem1 26768 . . . . . . . . . 10 (1 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
2724, 26mpbir 230 . . . . . . . . 9 1 ∈ 𝑆
2813, 27eqeltrdi 2846 . . . . . . . 8 (𝑏 ∈ (1...1) → 𝑏𝑆)
2928a1d 25 . . . . . . 7 (𝑏 ∈ (1...1) → (𝑏𝑎𝑏𝑆))
3029ralrimivw 3148 . . . . . 6 (𝑏 ∈ (1...1) → ∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
3130rgen 3067 . . . . 5 𝑏 ∈ (1...1)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)
32 2sqlem7.2 . . . . . . . . . . . . 13 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
33 simplr 768 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
34 nncn 12162 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3534ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑛 ∈ ℂ)
36 ax-1cn 11110 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
37 pncan 11408 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
3835, 36, 37sylancl 587 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ((𝑛 + 1) − 1) = 𝑛)
3938oveq2d 7374 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (1...((𝑛 + 1) − 1)) = (1...𝑛))
4039raleqdv 3314 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (∀𝑏 ∈ (1...((𝑛 + 1) − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
4133, 40mpbird 257 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → ∀𝑏 ∈ (1...((𝑛 + 1) − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
42 simprr 772 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∥ 𝑚)
43 peano2nn 12166 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
4443ad2antrr 725 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ ℕ)
45 simprl 770 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → 𝑚𝑌)
4625, 32, 41, 42, 44, 452sqlem9 26778 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ (𝑚𝑌 ∧ (𝑛 + 1) ∥ 𝑚)) → (𝑛 + 1) ∈ 𝑆)
4746expr 458 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) ∧ 𝑚𝑌) → ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))
4847ralrimiva 3144 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆)) → ∀𝑚𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))
4948ex 414 . . . . . . . . 9 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑚𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)))
50 breq2 5110 . . . . . . . . . . 11 (𝑎 = 𝑚 → ((𝑛 + 1) ∥ 𝑎 ↔ (𝑛 + 1) ∥ 𝑚))
5150imbi1d 342 . . . . . . . . . 10 (𝑎 = 𝑚 → (((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆)))
5251cbvralvw 3226 . . . . . . . . 9 (∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆) ↔ ∀𝑚𝑌 ((𝑛 + 1) ∥ 𝑚 → (𝑛 + 1) ∈ 𝑆))
5349, 52syl6ibr 252 . . . . . . . 8 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
54 ovex 7391 . . . . . . . . 9 (𝑛 + 1) ∈ V
55 breq1 5109 . . . . . . . . . . 11 (𝑏 = (𝑛 + 1) → (𝑏𝑎 ↔ (𝑛 + 1) ∥ 𝑎))
56 eleq1 2826 . . . . . . . . . . 11 (𝑏 = (𝑛 + 1) → (𝑏𝑆 ↔ (𝑛 + 1) ∈ 𝑆))
5755, 56imbi12d 345 . . . . . . . . . 10 (𝑏 = (𝑛 + 1) → ((𝑏𝑎𝑏𝑆) ↔ ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
5857ralbidv 3175 . . . . . . . . 9 (𝑏 = (𝑛 + 1) → (∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆)))
5954, 58ralsn 4643 . . . . . . . 8 (∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑎𝑌 ((𝑛 + 1) ∥ 𝑎 → (𝑛 + 1) ∈ 𝑆))
6053, 59syl6ibr 252 . . . . . . 7 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
6160ancld 552 . . . . . 6 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆))))
62 elnnuz 12808 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
63 fzsuc 13489 . . . . . . . . 9 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6462, 63sylbi 216 . . . . . . . 8 (𝑛 ∈ ℕ → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6564raleqdv 3314 . . . . . . 7 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ ∀𝑏 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
66 ralunb 4152 . . . . . . 7 (∀𝑏 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
6765, 66bitrdi 287 . . . . . 6 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ↔ (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) ∧ ∀𝑏 ∈ {(𝑛 + 1)}∀𝑎𝑌 (𝑏𝑎𝑏𝑆))))
6861, 67sylibrd 259 . . . . 5 (𝑛 ∈ ℕ → (∀𝑏 ∈ (1...𝑛)∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → ∀𝑏 ∈ (1...(𝑛 + 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆)))
696, 8, 10, 12, 31, 68nnind 12172 . . . 4 (𝐵 ∈ ℕ → ∀𝑏 ∈ (1...𝐵)∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
70 elfz1end 13472 . . . . 5 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵))
7170biimpi 215 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ (1...𝐵))
724, 69, 71rspcdva 3583 . . 3 (𝐵 ∈ ℕ → ∀𝑎𝑌 (𝐵𝑎𝐵𝑆))
73 breq2 5110 . . . . 5 (𝑎 = 𝐴 → (𝐵𝑎𝐵𝐴))
7473imbi1d 342 . . . 4 (𝑎 = 𝐴 → ((𝐵𝑎𝐵𝑆) ↔ (𝐵𝐴𝐵𝑆)))
7574rspcv 3578 . . 3 (𝐴𝑌 → (∀𝑎𝑌 (𝐵𝑎𝐵𝑆) → (𝐵𝐴𝐵𝑆)))
7672, 75syl5 34 . 2 (𝐴𝑌 → (𝐵 ∈ ℕ → (𝐵𝐴𝐵𝑆)))
77763imp 1112 1 ((𝐴𝑌𝐵 ∈ ℕ ∧ 𝐵𝐴) → 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2714  wral 3065  wrex 3074  cun 3909  {csn 4587   class class class wbr 5106  cmpt 5189  ran crn 5635  cfv 6497  (class class class)co 7358  cc 11050  1c1 11053   + caddc 11055  cmin 11386  cn 12154  2c2 12209  cz 12500  cuz 12764  ...cfz 13425  cexp 13968  abscabs 15120  cdvds 16137   gcd cgcd 16375  ℤ[i]cgz 16802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-pre-sup 11130
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-sup 9379  df-inf 9380  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-nn 12155  df-2 12217  df-3 12218  df-n0 12415  df-z 12501  df-uz 12765  df-rp 12917  df-fz 13426  df-fl 13698  df-mod 13776  df-seq 13908  df-exp 13969  df-cj 14985  df-re 14986  df-im 14987  df-sqrt 15121  df-abs 15122  df-dvds 16138  df-gcd 16376  df-prm 16549  df-gz 16803
This theorem is referenced by:  2sqlem11  26780
  Copyright terms: Public domain W3C validator