![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvscom | Structured version Visualization version GIF version |
Description: Commutative law for the scalar product of a normed complex vector space. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvscl.1 | β’ π = (BaseSetβπ) |
nvscl.4 | β’ π = ( Β·π OLD βπ) |
Ref | Expression |
---|---|
nvscom | β’ ((π β NrmCVec β§ (π΄ β β β§ π΅ β β β§ πΆ β π)) β (π΄π(π΅ππΆ)) = (π΅π(π΄ππΆ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcom 11198 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β (π΄ Β· π΅) = (π΅ Β· π΄)) | |
2 | 1 | oveq1d 7426 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β· π΅)ππΆ) = ((π΅ Β· π΄)ππΆ)) |
3 | 2 | 3adant3 1130 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ πΆ β π) β ((π΄ Β· π΅)ππΆ) = ((π΅ Β· π΄)ππΆ)) |
4 | 3 | adantl 480 | . 2 β’ ((π β NrmCVec β§ (π΄ β β β§ π΅ β β β§ πΆ β π)) β ((π΄ Β· π΅)ππΆ) = ((π΅ Β· π΄)ππΆ)) |
5 | nvscl.1 | . . 3 β’ π = (BaseSetβπ) | |
6 | nvscl.4 | . . 3 β’ π = ( Β·π OLD βπ) | |
7 | 5, 6 | nvsass 30148 | . 2 β’ ((π β NrmCVec β§ (π΄ β β β§ π΅ β β β§ πΆ β π)) β ((π΄ Β· π΅)ππΆ) = (π΄π(π΅ππΆ))) |
8 | 3ancoma 1096 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ πΆ β π) β (π΅ β β β§ π΄ β β β§ πΆ β π)) | |
9 | 5, 6 | nvsass 30148 | . . 3 β’ ((π β NrmCVec β§ (π΅ β β β§ π΄ β β β§ πΆ β π)) β ((π΅ Β· π΄)ππΆ) = (π΅π(π΄ππΆ))) |
10 | 8, 9 | sylan2b 592 | . 2 β’ ((π β NrmCVec β§ (π΄ β β β§ π΅ β β β§ πΆ β π)) β ((π΅ Β· π΄)ππΆ) = (π΅π(π΄ππΆ))) |
11 | 4, 7, 10 | 3eqtr3d 2778 | 1 β’ ((π β NrmCVec β§ (π΄ β β β§ π΅ β β β§ πΆ β π)) β (π΄π(π΅ππΆ)) = (π΅π(π΄ππΆ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βcfv 6542 (class class class)co 7411 βcc 11110 Β· cmul 11117 NrmCVeccnv 30104 BaseSetcba 30106 Β·π OLD cns 30107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 ax-mulcom 11176 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-1st 7977 df-2nd 7978 df-vc 30079 df-nv 30112 df-va 30115 df-ba 30116 df-sm 30117 df-0v 30118 df-nmcv 30120 |
This theorem is referenced by: nvmdi 30168 |
Copyright terms: Public domain | W3C validator |