MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvscom Structured version   Visualization version   GIF version

Theorem nvscom 30573
Description: Commutative law for the scalar product of a normed complex vector space. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvscom ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(𝐵𝑆𝐶)) = (𝐵𝑆(𝐴𝑆𝐶)))

Proof of Theorem nvscom
StepHypRef Expression
1 mulcom 11095 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
21oveq1d 7364 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)𝑆𝐶) = ((𝐵 · 𝐴)𝑆𝐶))
323adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋) → ((𝐴 · 𝐵)𝑆𝐶) = ((𝐵 · 𝐴)𝑆𝐶))
43adantl 481 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = ((𝐵 · 𝐴)𝑆𝐶))
5 nvscl.1 . . 3 𝑋 = (BaseSet‘𝑈)
6 nvscl.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvsass 30572 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
8 3ancoma 1097 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋) ↔ (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶𝑋))
95, 6nvsass 30572 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐵 · 𝐴)𝑆𝐶) = (𝐵𝑆(𝐴𝑆𝐶)))
108, 9sylan2b 594 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐵 · 𝐴)𝑆𝐶) = (𝐵𝑆(𝐴𝑆𝐶)))
114, 7, 103eqtr3d 2772 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(𝐵𝑆𝐶)) = (𝐵𝑆(𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cc 11007   · cmul 11014  NrmCVeccnv 30528  BaseSetcba 30530   ·𝑠OLD cns 30531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-mulcom 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-1st 7924  df-2nd 7925  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544
This theorem is referenced by:  nvmdi  30592
  Copyright terms: Public domain W3C validator