![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcomb | Structured version Visualization version GIF version |
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ishlg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
Ref | Expression |
---|---|
hlcomb | ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ 𝐵(𝐾‘𝐶)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1098 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ (𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))) | |
2 | orcom 869 | . . . . 5 ⊢ ((𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)) ↔ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)) ↔ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵)))) |
4 | 3 | 3anbi3d 1442 | . . 3 ⊢ (𝜑 → ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ (𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵))))) |
5 | 1, 4 | bitrid 283 | . 2 ⊢ (𝜑 → ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ (𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵))))) |
6 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
7 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
8 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
9 | ishlg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | ishlg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
11 | ishlg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
12 | ishlg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
13 | 6, 7, 8, 9, 10, 11, 12 | ishlg 28628 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))) |
14 | 6, 7, 8, 10, 9, 11, 12 | ishlg 28628 | . 2 ⊢ (𝜑 → (𝐵(𝐾‘𝐶)𝐴 ↔ (𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ (𝐵 ∈ (𝐶𝐼𝐴) ∨ 𝐴 ∈ (𝐶𝐼𝐵))))) |
15 | 5, 13, 14 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ 𝐵(𝐾‘𝐶)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Itvcitv 28459 hlGchlg 28626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-hlg 28627 |
This theorem is referenced by: hlcomd 28630 |
Copyright terms: Public domain | W3C validator |