![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcomb | Structured version Visualization version GIF version |
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | β’ π = (BaseβπΊ) |
ishlg.i | β’ πΌ = (ItvβπΊ) |
ishlg.k | β’ πΎ = (hlGβπΊ) |
ishlg.a | β’ (π β π΄ β π) |
ishlg.b | β’ (π β π΅ β π) |
ishlg.c | β’ (π β πΆ β π) |
ishlg.g | β’ (π β πΊ β π) |
Ref | Expression |
---|---|
hlcomb | β’ (π β (π΄(πΎβπΆ)π΅ β π΅(πΎβπΆ)π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1096 | . . 3 β’ ((π΄ β πΆ β§ π΅ β πΆ β§ (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄))) β (π΅ β πΆ β§ π΄ β πΆ β§ (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄)))) | |
2 | orcom 866 | . . . . 5 β’ ((π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄)) β (π΅ β (πΆπΌπ΄) β¨ π΄ β (πΆπΌπ΅))) | |
3 | 2 | a1i 11 | . . . 4 β’ (π β ((π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄)) β (π΅ β (πΆπΌπ΄) β¨ π΄ β (πΆπΌπ΅)))) |
4 | 3 | 3anbi3d 1440 | . . 3 β’ (π β ((π΅ β πΆ β§ π΄ β πΆ β§ (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄))) β (π΅ β πΆ β§ π΄ β πΆ β§ (π΅ β (πΆπΌπ΄) β¨ π΄ β (πΆπΌπ΅))))) |
5 | 1, 4 | bitrid 282 | . 2 β’ (π β ((π΄ β πΆ β§ π΅ β πΆ β§ (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄))) β (π΅ β πΆ β§ π΄ β πΆ β§ (π΅ β (πΆπΌπ΄) β¨ π΄ β (πΆπΌπ΅))))) |
6 | ishlg.p | . . 3 β’ π = (BaseβπΊ) | |
7 | ishlg.i | . . 3 β’ πΌ = (ItvβπΊ) | |
8 | ishlg.k | . . 3 β’ πΎ = (hlGβπΊ) | |
9 | ishlg.a | . . 3 β’ (π β π΄ β π) | |
10 | ishlg.b | . . 3 β’ (π β π΅ β π) | |
11 | ishlg.c | . . 3 β’ (π β πΆ β π) | |
12 | ishlg.g | . . 3 β’ (π β πΊ β π) | |
13 | 6, 7, 8, 9, 10, 11, 12 | ishlg 28120 | . 2 β’ (π β (π΄(πΎβπΆ)π΅ β (π΄ β πΆ β§ π΅ β πΆ β§ (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄))))) |
14 | 6, 7, 8, 10, 9, 11, 12 | ishlg 28120 | . 2 β’ (π β (π΅(πΎβπΆ)π΄ β (π΅ β πΆ β§ π΄ β πΆ β§ (π΅ β (πΆπΌπ΄) β¨ π΄ β (πΆπΌπ΅))))) |
15 | 5, 13, 14 | 3bitr4d 310 | 1 β’ (π β (π΄(πΎβπΆ)π΅ β π΅(πΎβπΆ)π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β¨ wo 843 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 class class class wbr 5147 βcfv 6542 (class class class)co 7411 Basecbs 17148 Itvcitv 27951 hlGchlg 28118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-hlg 28119 |
This theorem is referenced by: hlcomd 28122 |
Copyright terms: Public domain | W3C validator |