![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppssfifsupp | Structured version Visualization version GIF version |
Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.) |
Ref | Expression |
---|---|
suppssfifsupp | ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfi 9240 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹) → (𝐺 supp 𝑍) ∈ Fin) | |
2 | 1 | adantl 481 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 supp 𝑍) ∈ Fin) |
3 | 3ancoma 1098 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ↔ (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) | |
4 | 3 | biimpi 216 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
5 | 4 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
6 | funisfsupp 9437 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) |
8 | 2, 7 | mpbird 257 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 Fun wfun 6567 (class class class)co 7448 supp csupp 8201 Fincfn 9003 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-1o 8522 df-en 9004 df-fin 9007 df-fsupp 9432 |
This theorem is referenced by: fsuppsssupp 9450 fsuppsssuppgd 9451 fsfnn0gsumfsffz 20025 mptscmfsupp0 20947 uvcff 21834 uvcresum 21836 frlmup1 21841 psrass1lem 21975 psrlidm 22005 psrridm 22006 psrass1 22007 psrass23l 22010 psrcom 22011 psrass23 22012 mvrcl 22035 mplsubrglem 22047 mplsubrg 22048 mplmon 22076 mplmonmul 22077 mplcoe1 22078 mplcoe5 22081 mplbas2 22083 psrbagev1 22124 evlslem2 22126 evlslem3 22127 evlslem6 22128 psropprmul 22260 coe1mul2 22293 evls1fpws 22394 plypf1 26271 tayl0 26421 fsuppcurry1 32739 fsuppcurry2 32740 gsummptres2 33036 ply1degltdimlem 33635 fedgmullem1 33642 fedgmullem2 33643 evls1fldgencl 33680 lincresunit2 48207 |
Copyright terms: Public domain | W3C validator |