MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfifsupp Structured version   Visualization version   GIF version

Theorem suppssfifsupp 9331
Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.)
Assertion
Ref Expression
suppssfifsupp (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍)

Proof of Theorem suppssfifsupp
StepHypRef Expression
1 ssfi 9137 . . 3 ((𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹) → (𝐺 supp 𝑍) ∈ Fin)
21adantl 481 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 supp 𝑍) ∈ Fin)
3 3ancoma 1097 . . . . 5 ((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ↔ (Fun 𝐺𝐺𝑉𝑍𝑊))
43biimpi 216 . . . 4 ((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) → (Fun 𝐺𝐺𝑉𝑍𝑊))
54adantr 480 . . 3 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (Fun 𝐺𝐺𝑉𝑍𝑊))
6 funisfsupp 9318 . . 3 ((Fun 𝐺𝐺𝑉𝑍𝑊) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
75, 6syl 17 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
82, 7mpbird 257 1 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wss 3914   class class class wbr 5107  Fun wfun 6505  (class class class)co 7387   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922  df-fsupp 9313
This theorem is referenced by:  fsuppsssupp  9332  fsuppsssuppgd  9333  fsfnn0gsumfsffz  19913  mptscmfsupp0  20833  uvcff  21700  uvcresum  21702  frlmup1  21707  psrass1lem  21841  psrlidm  21871  psrridm  21872  psrass1  21873  psrass23l  21876  psrcom  21877  psrass23  21878  mvrcl  21901  mplsubrglem  21913  mplsubrg  21914  mplmon  21942  mplmonmul  21943  mplcoe1  21944  mplcoe5  21947  mplbas2  21949  psrbagev1  21984  evlslem2  21986  evlslem3  21987  evlslem6  21988  psropprmul  22122  coe1mul2  22155  evls1fpws  22256  plypf1  26117  tayl0  26269  fsuppcurry1  32648  fsuppcurry2  32649  gsummptres2  32993  elrgspnlem2  33194  elrgspnlem3  33195  ply1degltdimlem  33618  fedgmullem1  33625  fedgmullem2  33626  evls1fldgencl  33665  lincresunit2  48467
  Copyright terms: Public domain W3C validator