| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssfifsupp | Structured version Visualization version GIF version | ||
| Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.) |
| Ref | Expression |
|---|---|
| suppssfifsupp | ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi 9093 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹) → (𝐺 supp 𝑍) ∈ Fin) | |
| 2 | 1 | adantl 481 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 supp 𝑍) ∈ Fin) |
| 3 | 3ancoma 1097 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ↔ (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) | |
| 4 | 3 | biimpi 216 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
| 5 | 4 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
| 6 | funisfsupp 9262 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) |
| 8 | 2, 7 | mpbird 257 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5095 Fun wfun 6483 (class class class)co 7355 supp csupp 8099 Fincfn 8879 finSupp cfsupp 9256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-1o 8394 df-en 8880 df-fin 8883 df-fsupp 9257 |
| This theorem is referenced by: fsuppsssupp 9276 fsuppsssuppgd 9277 fsfnn0gsumfsffz 19903 mptscmfsupp0 20869 uvcff 21737 uvcresum 21739 frlmup1 21744 psrass1lem 21879 psrlidm 21908 psrridm 21909 psrass1 21910 psrass23l 21913 psrcom 21914 psrass23 21915 mvrcl 21938 mplsubrglem 21950 mplsubrg 21951 mplmon 21981 mplmonmul 21982 mplcoe1 21983 mplcoe5 21986 mplbas2 21988 psrbagev1 22023 evlslem2 22025 evlslem3 22026 evlslem6 22027 psropprmul 22169 coe1mul2 22202 evls1fpws 22304 plypf1 26164 tayl0 26316 fsuppcurry1 32731 fsuppcurry2 32732 gsummptres2 33064 elrgspnlem2 33253 elrgspnlem3 33254 ply1degltdimlem 33707 fedgmullem1 33714 fedgmullem2 33715 evls1fldgencl 33755 lincresunit2 48640 |
| Copyright terms: Public domain | W3C validator |