Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppssfifsupp | Structured version Visualization version GIF version |
Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.) |
Ref | Expression |
---|---|
suppssfifsupp | ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfi 8918 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹) → (𝐺 supp 𝑍) ∈ Fin) | |
2 | 1 | adantl 481 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 supp 𝑍) ∈ Fin) |
3 | 3ancoma 1096 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ↔ (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) | |
4 | 3 | biimpi 215 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
5 | 4 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
6 | funisfsupp 9063 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) |
8 | 2, 7 | mpbird 256 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 Fun wfun 6412 (class class class)co 7255 supp csupp 7948 Fincfn 8691 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 df-fsupp 9059 |
This theorem is referenced by: fsuppsssupp 9074 fsfnn0gsumfsffz 19499 mptscmfsupp0 20103 uvcff 20908 uvcresum 20910 frlmup1 20915 psrass1lemOLD 21053 psrass1lem 21056 psrlidm 21082 psrridm 21083 psrass1 21084 psrass23l 21087 psrcom 21088 psrass23 21089 mplsubrglem 21120 mplsubrg 21121 mvrcl 21131 mplmon 21146 mplmonmul 21147 mplcoe1 21148 mplcoe5 21151 mplbas2 21153 psrbagev1 21195 psrbagev1OLD 21196 evlslem2 21199 evlslem3 21200 evlslem6 21201 psropprmul 21319 coe1mul2 21350 plypf1 25278 tayl0 25426 fsuppcurry1 30962 fsuppcurry2 30963 gsummptres2 31215 fedgmullem1 31612 fedgmullem2 31613 lincresunit2 45707 |
Copyright terms: Public domain | W3C validator |