MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfifsupp Structured version   Visualization version   GIF version

Theorem suppssfifsupp 9275
Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.)
Assertion
Ref Expression
suppssfifsupp (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍)

Proof of Theorem suppssfifsupp
StepHypRef Expression
1 ssfi 9093 . . 3 ((𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹) → (𝐺 supp 𝑍) ∈ Fin)
21adantl 481 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 supp 𝑍) ∈ Fin)
3 3ancoma 1097 . . . . 5 ((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ↔ (Fun 𝐺𝐺𝑉𝑍𝑊))
43biimpi 216 . . . 4 ((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) → (Fun 𝐺𝐺𝑉𝑍𝑊))
54adantr 480 . . 3 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (Fun 𝐺𝐺𝑉𝑍𝑊))
6 funisfsupp 9262 . . 3 ((Fun 𝐺𝐺𝑉𝑍𝑊) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
75, 6syl 17 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
82, 7mpbird 257 1 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  wss 3898   class class class wbr 5095  Fun wfun 6483  (class class class)co 7355   supp csupp 8099  Fincfn 8879   finSupp cfsupp 9256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-1o 8394  df-en 8880  df-fin 8883  df-fsupp 9257
This theorem is referenced by:  fsuppsssupp  9276  fsuppsssuppgd  9277  fsfnn0gsumfsffz  19903  mptscmfsupp0  20869  uvcff  21737  uvcresum  21739  frlmup1  21744  psrass1lem  21879  psrlidm  21908  psrridm  21909  psrass1  21910  psrass23l  21913  psrcom  21914  psrass23  21915  mvrcl  21938  mplsubrglem  21950  mplsubrg  21951  mplmon  21981  mplmonmul  21982  mplcoe1  21983  mplcoe5  21986  mplbas2  21988  psrbagev1  22023  evlslem2  22025  evlslem3  22026  evlslem6  22027  psropprmul  22169  coe1mul2  22202  evls1fpws  22304  plypf1  26164  tayl0  26316  fsuppcurry1  32731  fsuppcurry2  32732  gsummptres2  33064  elrgspnlem2  33253  elrgspnlem3  33254  ply1degltdimlem  33707  fedgmullem1  33714  fedgmullem2  33715  evls1fldgencl  33755  lincresunit2  48640
  Copyright terms: Public domain W3C validator