MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfifsupp Structured version   Visualization version   GIF version

Theorem suppssfifsupp 9392
Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.)
Assertion
Ref Expression
suppssfifsupp (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍)

Proof of Theorem suppssfifsupp
StepHypRef Expression
1 ssfi 9187 . . 3 ((𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹) → (𝐺 supp 𝑍) ∈ Fin)
21adantl 481 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 supp 𝑍) ∈ Fin)
3 3ancoma 1097 . . . . 5 ((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ↔ (Fun 𝐺𝐺𝑉𝑍𝑊))
43biimpi 216 . . . 4 ((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) → (Fun 𝐺𝐺𝑉𝑍𝑊))
54adantr 480 . . 3 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (Fun 𝐺𝐺𝑉𝑍𝑊))
6 funisfsupp 9379 . . 3 ((Fun 𝐺𝐺𝑉𝑍𝑊) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
75, 6syl 17 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
82, 7mpbird 257 1 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wss 3926   class class class wbr 5119  Fun wfun 6525  (class class class)co 7405   supp csupp 8159  Fincfn 8959   finSupp cfsupp 9373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-1o 8480  df-en 8960  df-fin 8963  df-fsupp 9374
This theorem is referenced by:  fsuppsssupp  9393  fsuppsssuppgd  9394  fsfnn0gsumfsffz  19964  mptscmfsupp0  20884  uvcff  21751  uvcresum  21753  frlmup1  21758  psrass1lem  21892  psrlidm  21922  psrridm  21923  psrass1  21924  psrass23l  21927  psrcom  21928  psrass23  21929  mvrcl  21952  mplsubrglem  21964  mplsubrg  21965  mplmon  21993  mplmonmul  21994  mplcoe1  21995  mplcoe5  21998  mplbas2  22000  psrbagev1  22035  evlslem2  22037  evlslem3  22038  evlslem6  22039  psropprmul  22173  coe1mul2  22206  evls1fpws  22307  plypf1  26169  tayl0  26321  fsuppcurry1  32702  fsuppcurry2  32703  gsummptres2  33047  elrgspnlem2  33238  elrgspnlem3  33239  ply1degltdimlem  33662  fedgmullem1  33669  fedgmullem2  33670  evls1fldgencl  33711  lincresunit2  48454
  Copyright terms: Public domain W3C validator