![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppssfifsupp | Structured version Visualization version GIF version |
Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.) |
Ref | Expression |
---|---|
suppssfifsupp | ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfi 8422 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹) → (𝐺 supp 𝑍) ∈ Fin) | |
2 | 1 | adantl 474 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 supp 𝑍) ∈ Fin) |
3 | 3ancoma 1120 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ↔ (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) | |
4 | 3 | biimpi 208 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
5 | 4 | adantr 473 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
6 | funisfsupp 8522 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) |
8 | 2, 7 | mpbird 249 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 ⊆ wss 3769 class class class wbr 4843 Fun wfun 6095 (class class class)co 6878 supp csupp 7532 Fincfn 8195 finSupp cfsupp 8517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-om 7300 df-er 7982 df-en 8196 df-fin 8199 df-fsupp 8518 |
This theorem is referenced by: fsuppsssupp 8533 fsfnn0gsumfsffz 18694 mptscmfsupp0 19246 psrass1lem 19700 psrlidm 19726 psrridm 19727 psrass1 19728 psrass23l 19731 psrcom 19732 psrass23 19733 mplsubrglem 19762 mplsubrg 19763 mvrcl 19772 mplmon 19786 mplmonmul 19787 mplcoe1 19788 mplcoe5 19791 mplbas2 19793 psrbagev1 19832 evlslem2 19834 evlslem6 19835 evlslem3 19836 psropprmul 19930 coe1mul2 19961 uvcff 20455 uvcresum 20457 frlmup1 20462 plypf1 24309 tayl0 24457 lincresunit2 43066 |
Copyright terms: Public domain | W3C validator |