| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssfifsupp | Structured version Visualization version GIF version | ||
| Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.) |
| Ref | Expression |
|---|---|
| suppssfifsupp | ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi 9143 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹) → (𝐺 supp 𝑍) ∈ Fin) | |
| 2 | 1 | adantl 481 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 supp 𝑍) ∈ Fin) |
| 3 | 3ancoma 1097 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ↔ (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) | |
| 4 | 3 | biimpi 216 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
| 5 | 4 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
| 6 | funisfsupp 9325 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)) |
| 8 | 2, 7 | mpbird 257 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 Fun wfun 6508 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-1o 8437 df-en 8922 df-fin 8925 df-fsupp 9320 |
| This theorem is referenced by: fsuppsssupp 9339 fsuppsssuppgd 9340 fsfnn0gsumfsffz 19920 mptscmfsupp0 20840 uvcff 21707 uvcresum 21709 frlmup1 21714 psrass1lem 21848 psrlidm 21878 psrridm 21879 psrass1 21880 psrass23l 21883 psrcom 21884 psrass23 21885 mvrcl 21908 mplsubrglem 21920 mplsubrg 21921 mplmon 21949 mplmonmul 21950 mplcoe1 21951 mplcoe5 21954 mplbas2 21956 psrbagev1 21991 evlslem2 21993 evlslem3 21994 evlslem6 21995 psropprmul 22129 coe1mul2 22162 evls1fpws 22263 plypf1 26124 tayl0 26276 fsuppcurry1 32655 fsuppcurry2 32656 gsummptres2 33000 elrgspnlem2 33201 elrgspnlem3 33202 ply1degltdimlem 33625 fedgmullem1 33632 fedgmullem2 33633 evls1fldgencl 33672 lincresunit2 48471 |
| Copyright terms: Public domain | W3C validator |