Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnfzto1st Structured version   Visualization version   GIF version

Theorem psgnfzto1st 33069
Description: The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
psgnfzto1st.g 𝐺 = (SymGrp‘𝐷)
psgnfzto1st.b 𝐵 = (Base‘𝐺)
psgnfzto1st.s 𝑆 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfzto1st (𝐼𝐷 → (𝑆𝑃) = (-1↑(𝐼 + 1)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁   𝐵,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐺(𝑖)

Proof of Theorem psgnfzto1st
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfz1b 13561 . . . . 5 (𝐼 ∈ (1...𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
21biimpi 216 . . . 4 (𝐼 ∈ (1...𝑁) → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
3 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
42, 3eleq2s 2847 . . 3 (𝐼𝐷 → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
5 3ancoma 1097 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
64, 5sylibr 234 . 2 (𝐼𝐷 → (𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁))
7 df-3an 1088 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁))
8 breq1 5113 . . . . . 6 (𝑚 = 1 → (𝑚𝑁 ↔ 1 ≤ 𝑁))
9 id 22 . . . . . . . . . 10 (𝑚 = 1 → 𝑚 = 1)
10 breq2 5114 . . . . . . . . . . 11 (𝑚 = 1 → (𝑖𝑚𝑖 ≤ 1))
1110ifbid 4515 . . . . . . . . . 10 (𝑚 = 1 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))
129, 11ifeq12d 4513 . . . . . . . . 9 (𝑚 = 1 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
1312mpteq2dv 5204 . . . . . . . 8 (𝑚 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))))
1413fveq2d 6865 . . . . . . 7 (𝑚 = 1 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))))
15 oveq1 7397 . . . . . . . 8 (𝑚 = 1 → (𝑚 + 1) = (1 + 1))
1615oveq2d 7406 . . . . . . 7 (𝑚 = 1 → (-1↑(𝑚 + 1)) = (-1↑(1 + 1)))
1714, 16eqeq12d 2746 . . . . . 6 (𝑚 = 1 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))))
188, 17imbi12d 344 . . . . 5 (𝑚 = 1 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (1 ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1)))))
19 breq1 5113 . . . . . 6 (𝑚 = 𝑛 → (𝑚𝑁𝑛𝑁))
20 id 22 . . . . . . . . . 10 (𝑚 = 𝑛𝑚 = 𝑛)
21 breq2 5114 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑖𝑚𝑖𝑛))
2221ifbid 4515 . . . . . . . . . 10 (𝑚 = 𝑛 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝑛, (𝑖 − 1), 𝑖))
2320, 22ifeq12d 4513 . . . . . . . . 9 (𝑚 = 𝑛 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))
2423mpteq2dv 5204 . . . . . . . 8 (𝑚 = 𝑛 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))
2524fveq2d 6865 . . . . . . 7 (𝑚 = 𝑛 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
26 oveq1 7397 . . . . . . . 8 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
2726oveq2d 7406 . . . . . . 7 (𝑚 = 𝑛 → (-1↑(𝑚 + 1)) = (-1↑(𝑛 + 1)))
2825, 27eqeq12d 2746 . . . . . 6 (𝑚 = 𝑛 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))))
2919, 28imbi12d 344 . . . . 5 (𝑚 = 𝑛 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))))
30 breq1 5113 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑚𝑁 ↔ (𝑛 + 1) ≤ 𝑁))
31 id 22 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1))
32 breq2 5114 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑖𝑚𝑖 ≤ (𝑛 + 1)))
3332ifbid 4515 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))
3431, 33ifeq12d 4513 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))
3534mpteq2dv 5204 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))))
3635fveq2d 6865 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))))
37 oveq1 7397 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑚 + 1) = ((𝑛 + 1) + 1))
3837oveq2d 7406 . . . . . . 7 (𝑚 = (𝑛 + 1) → (-1↑(𝑚 + 1)) = (-1↑((𝑛 + 1) + 1)))
3936, 38eqeq12d 2746 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))))
4030, 39imbi12d 344 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))))
41 breq1 5113 . . . . . 6 (𝑚 = 𝐼 → (𝑚𝑁𝐼𝑁))
42 id 22 . . . . . . . . . . 11 (𝑚 = 𝐼𝑚 = 𝐼)
43 breq2 5114 . . . . . . . . . . . 12 (𝑚 = 𝐼 → (𝑖𝑚𝑖𝐼))
4443ifbid 4515 . . . . . . . . . . 11 (𝑚 = 𝐼 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝐼, (𝑖 − 1), 𝑖))
4542, 44ifeq12d 4513 . . . . . . . . . 10 (𝑚 = 𝐼 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4645mpteq2dv 5204 . . . . . . . . 9 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))))
47 psgnfzto1st.p . . . . . . . . 9 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4846, 47eqtr4di 2783 . . . . . . . 8 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = 𝑃)
4948fveq2d 6865 . . . . . . 7 (𝑚 = 𝐼 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆𝑃))
50 oveq1 7397 . . . . . . . 8 (𝑚 = 𝐼 → (𝑚 + 1) = (𝐼 + 1))
5150oveq2d 7406 . . . . . . 7 (𝑚 = 𝐼 → (-1↑(𝑚 + 1)) = (-1↑(𝐼 + 1)))
5249, 51eqeq12d 2746 . . . . . 6 (𝑚 = 𝐼 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆𝑃) = (-1↑(𝐼 + 1))))
5341, 52imbi12d 344 . . . . 5 (𝑚 = 𝐼 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝐼𝑁 → (𝑆𝑃) = (-1↑(𝐼 + 1)))))
54 fzfi 13944 . . . . . . . . 9 (1...𝑁) ∈ Fin
553, 54eqeltri 2825 . . . . . . . 8 𝐷 ∈ Fin
56 psgnfzto1st.s . . . . . . . . 9 𝑆 = (pmSgn‘𝐷)
5756psgnid 33061 . . . . . . . 8 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)
5855, 57ax-mp 5 . . . . . . 7 (𝑆‘( I ↾ 𝐷)) = 1
59 eqid 2730 . . . . . . . . 9 1 = 1
60 eqid 2730 . . . . . . . . . 10 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
613, 60fzto1st1 33066 . . . . . . . . 9 (1 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷))
6259, 61ax-mp 5 . . . . . . . 8 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷)
6362fveq2i 6864 . . . . . . 7 (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (𝑆‘( I ↾ 𝐷))
64 1p1e2 12313 . . . . . . . . 9 (1 + 1) = 2
6564oveq2i 7401 . . . . . . . 8 (-1↑(1 + 1)) = (-1↑2)
66 neg1sqe1 14168 . . . . . . . 8 (-1↑2) = 1
6765, 66eqtri 2753 . . . . . . 7 (-1↑(1 + 1)) = 1
6858, 63, 673eqtr4i 2763 . . . . . 6 (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))
69682a1i 12 . . . . 5 (𝑁 ∈ ℕ → (1 ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))))
70 simplr 768 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℕ)
7170peano2nnd 12210 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℕ)
72 simpll 766 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ)
73 simpr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ≤ 𝑁)
7471, 72, 733jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
75 elfz1b 13561 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (1...𝑁) ↔ ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
7674, 75sylibr 234 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ (1...𝑁))
7776, 3eleqtrrdi 2840 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ 𝐷)
783psgnfzto1stlem 33064 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
7970, 77, 78syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
8079adantlr 715 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
8180fveq2d 6865 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
8255a1i 11 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝐷 ∈ Fin)
83 eqid 2730 . . . . . . . . . 10 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
84 psgnfzto1st.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
85 psgnfzto1st.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
8683, 84, 85symgtrf 19406 . . . . . . . . 9 ran (pmTrsp‘𝐷) ⊆ 𝐵
87 eqid 2730 . . . . . . . . . . . 12 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
883, 87pmtrto1cl 33063 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
8970, 77, 88syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
9089adantlr 715 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
9186, 90sselid 3947 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵)
9270nnred 12208 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℝ)
93 1red 11182 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 1 ∈ ℝ)
9492, 93readdcld 11210 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℝ)
9572nnred 12208 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ)
9692lep1d 12121 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ (𝑛 + 1))
9792, 94, 95, 96, 73letrd 11338 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
9870, 72, 973jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁))
99 elfz1b 13561 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) ↔ (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁))
10098, 99sylibr 234 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ (1...𝑁))
101100, 3eleqtrrdi 2840 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝐷)
102101adantlr 715 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝐷)
103 eqid 2730 . . . . . . . . . 10 (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))
1043, 103, 84, 85fzto1st 33067 . . . . . . . . 9 (𝑛𝐷 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)
105102, 104syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)
10684, 56, 85psgnco 21499 . . . . . . . 8 ((𝐷 ∈ Fin ∧ ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
10782, 91, 105, 106syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
10884, 83, 56psgnpmtr 19447 . . . . . . . . . . 11 (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
10989, 108syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
110109adantlr 715 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
11197adantlr 715 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
112 simplr 768 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))))
113111, 112mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))
114110, 113oveq12d 7408 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = (-1 · (-1↑(𝑛 + 1))))
115 neg1cn 12178 . . . . . . . . . . 11 -1 ∈ ℂ
116 peano2nn 12205 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
117116nnnn0d 12510 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ0)
118 expp1 14040 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (𝑛 + 1) ∈ ℕ0) → (-1↑((𝑛 + 1) + 1)) = ((-1↑(𝑛 + 1)) · -1))
119115, 117, 118sylancr 587 . . . . . . . . . 10 (𝑛 ∈ ℕ → (-1↑((𝑛 + 1) + 1)) = ((-1↑(𝑛 + 1)) · -1))
120115a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → -1 ∈ ℂ)
121120, 117expcld 14118 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (-1↑(𝑛 + 1)) ∈ ℂ)
122121, 120mulcomd 11202 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((-1↑(𝑛 + 1)) · -1) = (-1 · (-1↑(𝑛 + 1))))
123119, 122eqtr2d 2766 . . . . . . . . 9 (𝑛 ∈ ℕ → (-1 · (-1↑(𝑛 + 1))) = (-1↑((𝑛 + 1) + 1)))
124123ad3antlr 731 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (-1 · (-1↑(𝑛 + 1))) = (-1↑((𝑛 + 1) + 1)))
125114, 124eqtrd 2765 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = (-1↑((𝑛 + 1) + 1)))
12681, 107, 1253eqtrd 2769 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))
127126ex 412 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) → ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))))
12818, 29, 40, 53, 69, 127nnindd 12213 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝐼𝑁 → (𝑆𝑃) = (-1↑(𝐼 + 1))))
129128imp 406 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁) → (𝑆𝑃) = (-1↑(𝐼 + 1)))
1307, 129sylbi 217 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) → (𝑆𝑃) = (-1↑(𝐼 + 1)))
1316, 130syl 17 1 (𝐼𝐷 → (𝑆𝑃) = (-1↑(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ifcif 4491  {cpr 4594   class class class wbr 5110  cmpt 5191   I cid 5535  ran crn 5642  cres 5643  ccom 5645  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  -cneg 11413  cn 12193  2c2 12248  0cn0 12449  ...cfz 13475  cexp 14033  Basecbs 17186  SymGrpcsymg 19306  pmTrspcpmtr 19378  pmSgncpsgn 19426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-subg 19062  df-ghm 19152  df-gim 19198  df-oppg 19285  df-symg 19307  df-pmtr 19379  df-psgn 19428  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-cnfld 21272
This theorem is referenced by:  madjusmdetlem4  33827
  Copyright terms: Public domain W3C validator