| Step | Hyp | Ref
| Expression |
| 1 | | elfz1b 13633 |
. . . . 5
⊢ (𝐼 ∈ (1...𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
| 2 | 1 | biimpi 216 |
. . . 4
⊢ (𝐼 ∈ (1...𝑁) → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
| 3 | | psgnfzto1st.d |
. . . 4
⊢ 𝐷 = (1...𝑁) |
| 4 | 2, 3 | eleq2s 2859 |
. . 3
⊢ (𝐼 ∈ 𝐷 → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
| 5 | | 3ancoma 1098 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
| 6 | 4, 5 | sylibr 234 |
. 2
⊢ (𝐼 ∈ 𝐷 → (𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
| 7 | | df-3an 1089 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝑁) ↔ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼 ≤ 𝑁)) |
| 8 | | breq1 5146 |
. . . . . 6
⊢ (𝑚 = 1 → (𝑚 ≤ 𝑁 ↔ 1 ≤ 𝑁)) |
| 9 | | id 22 |
. . . . . . . . . 10
⊢ (𝑚 = 1 → 𝑚 = 1) |
| 10 | | breq2 5147 |
. . . . . . . . . . 11
⊢ (𝑚 = 1 → (𝑖 ≤ 𝑚 ↔ 𝑖 ≤ 1)) |
| 11 | 10 | ifbid 4549 |
. . . . . . . . . 10
⊢ (𝑚 = 1 → if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)) |
| 12 | 9, 11 | ifeq12d 4547 |
. . . . . . . . 9
⊢ (𝑚 = 1 → if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) |
| 13 | 12 | mpteq2dv 5244 |
. . . . . . . 8
⊢ (𝑚 = 1 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) |
| 14 | 13 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑚 = 1 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))))) |
| 15 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑚 = 1 → (𝑚 + 1) = (1 + 1)) |
| 16 | 15 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑚 = 1 → (-1↑(𝑚 + 1)) = (-1↑(1 +
1))) |
| 17 | 14, 16 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑚 = 1 → ((𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1)))) |
| 18 | 8, 17 | imbi12d 344 |
. . . . 5
⊢ (𝑚 = 1 → ((𝑚 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (1 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))))) |
| 19 | | breq1 5146 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (𝑚 ≤ 𝑁 ↔ 𝑛 ≤ 𝑁)) |
| 20 | | id 22 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) |
| 21 | | breq2 5147 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑖 ≤ 𝑚 ↔ 𝑖 ≤ 𝑛)) |
| 22 | 21 | ifbid 4549 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)) |
| 23 | 20, 22 | ifeq12d 4547 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) |
| 24 | 23 | mpteq2dv 5244 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) |
| 25 | 24 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) |
| 26 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1)) |
| 27 | 26 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (-1↑(𝑚 + 1)) = (-1↑(𝑛 + 1))) |
| 28 | 25, 27 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) |
| 29 | 19, 28 | imbi12d 344 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((𝑚 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))))) |
| 30 | | breq1 5146 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (𝑚 ≤ 𝑁 ↔ (𝑛 + 1) ≤ 𝑁)) |
| 31 | | id 22 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1)) |
| 32 | | breq2 5147 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑛 + 1) → (𝑖 ≤ 𝑚 ↔ 𝑖 ≤ (𝑛 + 1))) |
| 33 | 32 | ifbid 4549 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑛 + 1) → if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)) |
| 34 | 31, 33 | ifeq12d 4547 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 + 1) → if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) |
| 35 | 34 | mpteq2dv 5244 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) |
| 36 | 35 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))))) |
| 37 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → (𝑚 + 1) = ((𝑛 + 1) + 1)) |
| 38 | 37 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → (-1↑(𝑚 + 1)) = (-1↑((𝑛 + 1) + 1))) |
| 39 | 36, 38 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → ((𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))) |
| 40 | 30, 39 | imbi12d 344 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → ((𝑚 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))))) |
| 41 | | breq1 5146 |
. . . . . 6
⊢ (𝑚 = 𝐼 → (𝑚 ≤ 𝑁 ↔ 𝐼 ≤ 𝑁)) |
| 42 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝐼 → 𝑚 = 𝐼) |
| 43 | | breq2 5147 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝐼 → (𝑖 ≤ 𝑚 ↔ 𝑖 ≤ 𝐼)) |
| 44 | 43 | ifbid 4549 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝐼 → if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) |
| 45 | 42, 44 | ifeq12d 4547 |
. . . . . . . . . 10
⊢ (𝑚 = 𝐼 → if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
| 46 | 45 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑚 = 𝐼 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)))) |
| 47 | | psgnfzto1st.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
| 48 | 46, 47 | eqtr4di 2795 |
. . . . . . . 8
⊢ (𝑚 = 𝐼 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = 𝑃) |
| 49 | 48 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑚 = 𝐼 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘𝑃)) |
| 50 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑚 = 𝐼 → (𝑚 + 1) = (𝐼 + 1)) |
| 51 | 50 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑚 = 𝐼 → (-1↑(𝑚 + 1)) = (-1↑(𝐼 + 1))) |
| 52 | 49, 51 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑚 = 𝐼 → ((𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘𝑃) = (-1↑(𝐼 + 1)))) |
| 53 | 41, 52 | imbi12d 344 |
. . . . 5
⊢ (𝑚 = 𝐼 → ((𝑚 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝐼 ≤ 𝑁 → (𝑆‘𝑃) = (-1↑(𝐼 + 1))))) |
| 54 | | fzfi 14013 |
. . . . . . . . 9
⊢
(1...𝑁) ∈
Fin |
| 55 | 3, 54 | eqeltri 2837 |
. . . . . . . 8
⊢ 𝐷 ∈ Fin |
| 56 | | psgnfzto1st.s |
. . . . . . . . 9
⊢ 𝑆 = (pmSgn‘𝐷) |
| 57 | 56 | psgnid 33117 |
. . . . . . . 8
⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1) |
| 58 | 55, 57 | ax-mp 5 |
. . . . . . 7
⊢ (𝑆‘( I ↾ 𝐷)) = 1 |
| 59 | | eqid 2737 |
. . . . . . . . 9
⊢ 1 =
1 |
| 60 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) |
| 61 | 3, 60 | fzto1st1 33122 |
. . . . . . . . 9
⊢ (1 = 1
→ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷)) |
| 62 | 59, 61 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷) |
| 63 | 62 | fveq2i 6909 |
. . . . . . 7
⊢ (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (𝑆‘( I ↾ 𝐷)) |
| 64 | | 1p1e2 12391 |
. . . . . . . . 9
⊢ (1 + 1) =
2 |
| 65 | 64 | oveq2i 7442 |
. . . . . . . 8
⊢
(-1↑(1 + 1)) = (-1↑2) |
| 66 | | neg1sqe1 14235 |
. . . . . . . 8
⊢
(-1↑2) = 1 |
| 67 | 65, 66 | eqtri 2765 |
. . . . . . 7
⊢
(-1↑(1 + 1)) = 1 |
| 68 | 58, 63, 67 | 3eqtr4i 2775 |
. . . . . 6
⊢ (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1)) |
| 69 | 68 | 2a1i 12 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (1 ≤
𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1)))) |
| 70 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℕ) |
| 71 | 70 | peano2nnd 12283 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℕ) |
| 72 | | simpll 767 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ) |
| 73 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ≤ 𝑁) |
| 74 | 71, 72, 73 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁)) |
| 75 | | elfz1b 13633 |
. . . . . . . . . . . 12
⊢ ((𝑛 + 1) ∈ (1...𝑁) ↔ ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁)) |
| 76 | 74, 75 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ (1...𝑁)) |
| 77 | 76, 3 | eleqtrrdi 2852 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ 𝐷) |
| 78 | 3 | psgnfzto1stlem 33120 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) |
| 79 | 70, 77, 78 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) |
| 80 | 79 | adantlr 715 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) |
| 81 | 80 | fveq2d 6910 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))))) |
| 82 | 55 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝐷 ∈ Fin) |
| 83 | | eqid 2737 |
. . . . . . . . . 10
⊢ ran
(pmTrsp‘𝐷) = ran
(pmTrsp‘𝐷) |
| 84 | | psgnfzto1st.g |
. . . . . . . . . 10
⊢ 𝐺 = (SymGrp‘𝐷) |
| 85 | | psgnfzto1st.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐺) |
| 86 | 83, 84, 85 | symgtrf 19487 |
. . . . . . . . 9
⊢ ran
(pmTrsp‘𝐷) ⊆
𝐵 |
| 87 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
| 88 | 3, 87 | pmtrto1cl 33119 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷)) |
| 89 | 70, 77, 88 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷)) |
| 90 | 89 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷)) |
| 91 | 86, 90 | sselid 3981 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵) |
| 92 | 70 | nnred 12281 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℝ) |
| 93 | | 1red 11262 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 1 ∈ ℝ) |
| 94 | 92, 93 | readdcld 11290 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℝ) |
| 95 | 72 | nnred 12281 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ) |
| 96 | 92 | lep1d 12199 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ (𝑛 + 1)) |
| 97 | 92, 94, 95, 96, 73 | letrd 11418 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ 𝑁) |
| 98 | 70, 72, 97 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ≤ 𝑁)) |
| 99 | | elfz1b 13633 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (1...𝑁) ↔ (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ≤ 𝑁)) |
| 100 | 98, 99 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ (1...𝑁)) |
| 101 | 100, 3 | eleqtrrdi 2852 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ 𝐷) |
| 102 | 101 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ 𝐷) |
| 103 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) |
| 104 | 3, 103, 84, 85 | fzto1st 33123 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐷 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) |
| 105 | 102, 104 | syl 17 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) |
| 106 | 84, 56, 85 | psgnco 21601 |
. . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧
((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))))) |
| 107 | 82, 91, 105, 106 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))))) |
| 108 | 84, 83, 56 | psgnpmtr 19528 |
. . . . . . . . . . 11
⊢
(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1) |
| 109 | 89, 108 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1) |
| 110 | 109 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1) |
| 111 | 97 | adantlr 715 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ 𝑁) |
| 112 | | simplr 769 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) |
| 113 | 111, 112 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))) |
| 114 | 110, 113 | oveq12d 7449 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) = (-1 · (-1↑(𝑛 + 1)))) |
| 115 | | neg1cn 12380 |
. . . . . . . . . . 11
⊢ -1 ∈
ℂ |
| 116 | | peano2nn 12278 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
| 117 | 116 | nnnn0d 12587 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ0) |
| 118 | | expp1 14109 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℂ ∧ (𝑛 +
1) ∈ ℕ0) → (-1↑((𝑛 + 1) + 1)) = ((-1↑(𝑛 + 1)) · -1)) |
| 119 | 115, 117,
118 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ →
(-1↑((𝑛 + 1) + 1)) =
((-1↑(𝑛 + 1)) ·
-1)) |
| 120 | 115 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → -1 ∈
ℂ) |
| 121 | 120, 117 | expcld 14186 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
(-1↑(𝑛 + 1)) ∈
ℂ) |
| 122 | 121, 120 | mulcomd 11282 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ →
((-1↑(𝑛 + 1)) ·
-1) = (-1 · (-1↑(𝑛 + 1)))) |
| 123 | 119, 122 | eqtr2d 2778 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (-1
· (-1↑(𝑛 + 1)))
= (-1↑((𝑛 + 1) +
1))) |
| 124 | 123 | ad3antlr 731 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (-1 · (-1↑(𝑛 + 1))) = (-1↑((𝑛 + 1) + 1))) |
| 125 | 114, 124 | eqtrd 2777 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) = (-1↑((𝑛 + 1) + 1))) |
| 126 | 81, 107, 125 | 3eqtrd 2781 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))) |
| 127 | 126 | ex 412 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) → ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))) |
| 128 | 18, 29, 40, 53, 69, 127 | nnindd 12286 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝐼 ≤ 𝑁 → (𝑆‘𝑃) = (-1↑(𝐼 + 1)))) |
| 129 | 128 | imp 406 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼 ≤ 𝑁) → (𝑆‘𝑃) = (-1↑(𝐼 + 1))) |
| 130 | 7, 129 | sylbi 217 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝑁) → (𝑆‘𝑃) = (-1↑(𝐼 + 1))) |
| 131 | 6, 130 | syl 17 |
1
⊢ (𝐼 ∈ 𝐷 → (𝑆‘𝑃) = (-1↑(𝐼 + 1))) |