Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnfzto1st Structured version   Visualization version   GIF version

Theorem psgnfzto1st 30302
Description: The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
psgnfzto1st.g 𝐺 = (SymGrp‘𝐷)
psgnfzto1st.b 𝐵 = (Base‘𝐺)
psgnfzto1st.s 𝑆 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfzto1st (𝐼𝐷 → (𝑆𝑃) = (-1↑(𝐼 + 1)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁   𝐵,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐺(𝑖)

Proof of Theorem psgnfzto1st
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfz1b 12616 . . . . 5 (𝐼 ∈ (1...𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
21biimpi 207 . . . 4 (𝐼 ∈ (1...𝑁) → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
3 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
42, 3eleq2s 2862 . . 3 (𝐼𝐷 → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
5 3ancoma 1119 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
64, 5sylibr 225 . 2 (𝐼𝐷 → (𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁))
7 df-3an 1109 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁))
8 breq1 4812 . . . . . 6 (𝑚 = 1 → (𝑚𝑁 ↔ 1 ≤ 𝑁))
9 id 22 . . . . . . . . . 10 (𝑚 = 1 → 𝑚 = 1)
10 breq2 4813 . . . . . . . . . . 11 (𝑚 = 1 → (𝑖𝑚𝑖 ≤ 1))
1110ifbid 4265 . . . . . . . . . 10 (𝑚 = 1 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))
129, 11ifeq12d 4263 . . . . . . . . 9 (𝑚 = 1 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
1312mpteq2dv 4904 . . . . . . . 8 (𝑚 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))))
1413fveq2d 6379 . . . . . . 7 (𝑚 = 1 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))))
15 oveq1 6849 . . . . . . . 8 (𝑚 = 1 → (𝑚 + 1) = (1 + 1))
1615oveq2d 6858 . . . . . . 7 (𝑚 = 1 → (-1↑(𝑚 + 1)) = (-1↑(1 + 1)))
1714, 16eqeq12d 2780 . . . . . 6 (𝑚 = 1 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))))
188, 17imbi12d 335 . . . . 5 (𝑚 = 1 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (1 ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1)))))
19 breq1 4812 . . . . . 6 (𝑚 = 𝑛 → (𝑚𝑁𝑛𝑁))
20 id 22 . . . . . . . . . 10 (𝑚 = 𝑛𝑚 = 𝑛)
21 breq2 4813 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑖𝑚𝑖𝑛))
2221ifbid 4265 . . . . . . . . . 10 (𝑚 = 𝑛 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝑛, (𝑖 − 1), 𝑖))
2320, 22ifeq12d 4263 . . . . . . . . 9 (𝑚 = 𝑛 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))
2423mpteq2dv 4904 . . . . . . . 8 (𝑚 = 𝑛 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))
2524fveq2d 6379 . . . . . . 7 (𝑚 = 𝑛 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
26 oveq1 6849 . . . . . . . 8 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
2726oveq2d 6858 . . . . . . 7 (𝑚 = 𝑛 → (-1↑(𝑚 + 1)) = (-1↑(𝑛 + 1)))
2825, 27eqeq12d 2780 . . . . . 6 (𝑚 = 𝑛 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))))
2919, 28imbi12d 335 . . . . 5 (𝑚 = 𝑛 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))))
30 breq1 4812 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑚𝑁 ↔ (𝑛 + 1) ≤ 𝑁))
31 id 22 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1))
32 breq2 4813 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑖𝑚𝑖 ≤ (𝑛 + 1)))
3332ifbid 4265 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))
3431, 33ifeq12d 4263 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))
3534mpteq2dv 4904 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))))
3635fveq2d 6379 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))))
37 oveq1 6849 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑚 + 1) = ((𝑛 + 1) + 1))
3837oveq2d 6858 . . . . . . 7 (𝑚 = (𝑛 + 1) → (-1↑(𝑚 + 1)) = (-1↑((𝑛 + 1) + 1)))
3936, 38eqeq12d 2780 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))))
4030, 39imbi12d 335 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))))
41 breq1 4812 . . . . . 6 (𝑚 = 𝐼 → (𝑚𝑁𝐼𝑁))
42 id 22 . . . . . . . . . . 11 (𝑚 = 𝐼𝑚 = 𝐼)
43 breq2 4813 . . . . . . . . . . . 12 (𝑚 = 𝐼 → (𝑖𝑚𝑖𝐼))
4443ifbid 4265 . . . . . . . . . . 11 (𝑚 = 𝐼 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝐼, (𝑖 − 1), 𝑖))
4542, 44ifeq12d 4263 . . . . . . . . . 10 (𝑚 = 𝐼 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4645mpteq2dv 4904 . . . . . . . . 9 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))))
47 psgnfzto1st.p . . . . . . . . 9 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4846, 47syl6eqr 2817 . . . . . . . 8 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = 𝑃)
4948fveq2d 6379 . . . . . . 7 (𝑚 = 𝐼 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆𝑃))
50 oveq1 6849 . . . . . . . 8 (𝑚 = 𝐼 → (𝑚 + 1) = (𝐼 + 1))
5150oveq2d 6858 . . . . . . 7 (𝑚 = 𝐼 → (-1↑(𝑚 + 1)) = (-1↑(𝐼 + 1)))
5249, 51eqeq12d 2780 . . . . . 6 (𝑚 = 𝐼 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆𝑃) = (-1↑(𝐼 + 1))))
5341, 52imbi12d 335 . . . . 5 (𝑚 = 𝐼 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝐼𝑁 → (𝑆𝑃) = (-1↑(𝐼 + 1)))))
54 fzfi 12979 . . . . . . . . 9 (1...𝑁) ∈ Fin
553, 54eqeltri 2840 . . . . . . . 8 𝐷 ∈ Fin
56 psgnfzto1st.s . . . . . . . . 9 𝑆 = (pmSgn‘𝐷)
5756psgnid 30294 . . . . . . . 8 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)
5855, 57ax-mp 5 . . . . . . 7 (𝑆‘( I ↾ 𝐷)) = 1
59 eqid 2765 . . . . . . . . 9 1 = 1
60 eqid 2765 . . . . . . . . . 10 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
613, 60fzto1st1 30299 . . . . . . . . 9 (1 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷))
6259, 61ax-mp 5 . . . . . . . 8 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷)
6362fveq2i 6378 . . . . . . 7 (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (𝑆‘( I ↾ 𝐷))
64 1p1e2 11404 . . . . . . . . 9 (1 + 1) = 2
6564oveq2i 6853 . . . . . . . 8 (-1↑(1 + 1)) = (-1↑2)
66 neg1sqe1 13166 . . . . . . . 8 (-1↑2) = 1
6765, 66eqtri 2787 . . . . . . 7 (-1↑(1 + 1)) = 1
6858, 63, 673eqtr4i 2797 . . . . . 6 (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))
69682a1i 12 . . . . 5 (𝑁 ∈ ℕ → (1 ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))))
70 simplr 785 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℕ)
7170peano2nnd 11293 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℕ)
72 simpll 783 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ)
73 simpr 477 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ≤ 𝑁)
7471, 72, 733jca 1158 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
75 elfz1b 12616 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (1...𝑁) ↔ ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
7674, 75sylibr 225 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ (1...𝑁))
7776, 3syl6eleqr 2855 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ 𝐷)
783psgnfzto1stlem 30297 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
7970, 77, 78syl2anc 579 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
8079adantlr 706 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
8180fveq2d 6379 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
8255a1i 11 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝐷 ∈ Fin)
83 eqid 2765 . . . . . . . . . 10 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
84 psgnfzto1st.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
85 psgnfzto1st.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
8683, 84, 85symgtrf 18152 . . . . . . . . 9 ran (pmTrsp‘𝐷) ⊆ 𝐵
87 eqid 2765 . . . . . . . . . . . 12 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
883, 87pmtrto1cl 30296 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
8970, 77, 88syl2anc 579 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
9089adantlr 706 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
9186, 90sseldi 3759 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵)
9270nnred 11291 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℝ)
93 1red 10294 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 1 ∈ ℝ)
9492, 93readdcld 10323 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℝ)
9572nnred 11291 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ)
9692lep1d 11209 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ (𝑛 + 1))
9792, 94, 95, 96, 73letrd 10448 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
9870, 72, 973jca 1158 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁))
99 elfz1b 12616 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) ↔ (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁))
10098, 99sylibr 225 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ (1...𝑁))
101100, 3syl6eleqr 2855 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝐷)
102101adantlr 706 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝐷)
103 eqid 2765 . . . . . . . . . 10 (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))
1043, 103, 84, 85fzto1st 30300 . . . . . . . . 9 (𝑛𝐷 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)
105102, 104syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)
10684, 56, 85psgnco 20201 . . . . . . . 8 ((𝐷 ∈ Fin ∧ ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
10782, 91, 105, 106syl3anc 1490 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
10884, 83, 56psgnpmtr 18194 . . . . . . . . . . 11 (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
10989, 108syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
110109adantlr 706 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
11197adantlr 706 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
112 simplr 785 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))))
113111, 112mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))
114110, 113oveq12d 6860 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = (-1 · (-1↑(𝑛 + 1))))
115 neg1cn 11393 . . . . . . . . . . 11 -1 ∈ ℂ
116 peano2nn 11288 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
117116nnnn0d 11598 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ0)
118 expp1 13074 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (𝑛 + 1) ∈ ℕ0) → (-1↑((𝑛 + 1) + 1)) = ((-1↑(𝑛 + 1)) · -1))
119115, 117, 118sylancr 581 . . . . . . . . . 10 (𝑛 ∈ ℕ → (-1↑((𝑛 + 1) + 1)) = ((-1↑(𝑛 + 1)) · -1))
120115a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → -1 ∈ ℂ)
121120, 117expcld 13215 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (-1↑(𝑛 + 1)) ∈ ℂ)
122121, 120mulcomd 10315 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((-1↑(𝑛 + 1)) · -1) = (-1 · (-1↑(𝑛 + 1))))
123119, 122eqtr2d 2800 . . . . . . . . 9 (𝑛 ∈ ℕ → (-1 · (-1↑(𝑛 + 1))) = (-1↑((𝑛 + 1) + 1)))
124123ad3antlr 722 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (-1 · (-1↑(𝑛 + 1))) = (-1↑((𝑛 + 1) + 1)))
125114, 124eqtrd 2799 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = (-1↑((𝑛 + 1) + 1)))
12681, 107, 1253eqtrd 2803 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))
127126ex 401 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) → ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))))
12818, 29, 40, 53, 69, 127nnindd 30015 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝐼𝑁 → (𝑆𝑃) = (-1↑(𝐼 + 1))))
129128imp 395 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁) → (𝑆𝑃) = (-1↑(𝐼 + 1)))
1307, 129sylbi 208 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) → (𝑆𝑃) = (-1↑(𝐼 + 1)))
1316, 130syl 17 1 (𝐼𝐷 → (𝑆𝑃) = (-1↑(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  ifcif 4243  {cpr 4336   class class class wbr 4809  cmpt 4888   I cid 5184  ran crn 5278  cres 5279  ccom 5281  cfv 6068  (class class class)co 6842  Fincfn 8160  cc 10187  1c1 10190   + caddc 10192   · cmul 10194  cle 10329  cmin 10520  -cneg 10521  cn 11274  2c2 11327  0cn0 11538  ...cfz 12533  cexp 13067  Basecbs 16130  SymGrpcsymg 18060  pmTrspcpmtr 18124  pmSgncpsgn 18172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-xor 1634  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-ot 4343  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-xnn0 11611  df-z 11625  df-dec 11741  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13487  df-lsw 13534  df-concat 13542  df-s1 13567  df-substr 13617  df-pfx 13662  df-splice 13765  df-reverse 13783  df-s2 13877  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-0g 16368  df-gsum 16369  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-mhm 17601  df-submnd 17602  df-grp 17692  df-minusg 17693  df-subg 17855  df-ghm 17922  df-gim 17965  df-oppg 18039  df-symg 18061  df-pmtr 18125  df-psgn 18174  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950  df-drng 19018  df-cnfld 20020
This theorem is referenced by:  madjusmdetlem4  30343
  Copyright terms: Public domain W3C validator