Proof of Theorem rngcinv
Step | Hyp | Ref
| Expression |
1 | | rngcsect.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
2 | | rngcinv.n |
. . 3
⊢ 𝑁 = (Inv‘𝐶) |
3 | | rngcsect.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
4 | | rngcsect.c |
. . . . 5
⊢ 𝐶 = (RngCat‘𝑈) |
5 | 4 | rngccat 45424 |
. . . 4
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | | rngcsect.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
8 | | rngcsect.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
9 | | eqid 2738 |
. . 3
⊢
(Sect‘𝐶) =
(Sect‘𝐶) |
10 | 1, 2, 6, 7, 8, 9 | isinv 17389 |
. 2
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) |
11 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
12 | 4, 1, 3, 7, 8, 11,
9 | rngcsect 45426 |
. . . . 5
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
13 | | df-3an 1087 |
. . . . 5
⊢ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) |
14 | 12, 13 | bitrdi 286 |
. . . 4
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
15 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑌) |
16 | 4, 1, 3, 8, 7, 15,
9 | rngcsect 45426 |
. . . . 5
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
17 | | 3ancoma 1096 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
18 | | df-3an 1087 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
19 | 17, 18 | bitri 274 |
. . . . 5
⊢ ((𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
20 | 16, 19 | bitrdi 286 |
. . . 4
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
21 | 14, 20 | anbi12d 630 |
. . 3
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))))) |
22 | | anandi 672 |
. . 3
⊢ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) ↔ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
23 | 21, 22 | bitrdi 286 |
. 2
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))))) |
24 | | simplrl 773 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → 𝐹 ∈ (𝑋 RngHomo 𝑌)) |
25 | 24 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → 𝐹 ∈ (𝑋 RngHomo 𝑌)) |
26 | 11, 15 | rnghmf 45345 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑋 RngHomo 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) |
27 | 15, 11 | rnghmf 45345 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝑌 RngHomo 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) |
28 | 26, 27 | anim12i 612 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋))) |
29 | 28 | ad2antlr 723 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋))) |
30 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) |
31 | 30 | adantl 481 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) |
32 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
33 | 32 | ad2antrl 724 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
34 | 29, 31, 33 | jca32 515 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
35 | 34 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
36 | | fcof1o 7148 |
. . . . . . 7
⊢ (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ ◡𝐹 = 𝐺)) |
37 | | eqcom 2745 |
. . . . . . . 8
⊢ (◡𝐹 = 𝐺 ↔ 𝐺 = ◡𝐹) |
38 | 37 | anbi2i 622 |
. . . . . . 7
⊢ ((𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ ◡𝐹 = 𝐺) ↔ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) |
39 | 36, 38 | sylib 217 |
. . . . . 6
⊢ (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) |
40 | 35, 39 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) |
41 | | anass 468 |
. . . . 5
⊢ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹))) |
42 | 25, 40, 41 | sylanbrc 582 |
. . . 4
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹)) |
43 | 11, 15 | isrngim 45350 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)))) |
44 | 7, 8, 43 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)))) |
45 | 44 | anbi1d 629 |
. . . . 5
⊢ (𝜑 → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹))) |
46 | 45 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹))) |
47 | 42, 46 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) |
48 | 11, 15 | rngimrnghm 45352 |
. . . . . 6
⊢ (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹 ∈ (𝑋 RngHomo 𝑌)) |
49 | 48 | ad2antrl 724 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐹 ∈ (𝑋 RngHomo 𝑌)) |
50 | | isrngisom 45342 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ ◡𝐹 ∈ (𝑌 RngHomo 𝑋)))) |
51 | 7, 8, 50 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ ◡𝐹 ∈ (𝑌 RngHomo 𝑋)))) |
52 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (◡𝐹 = 𝐺 → (◡𝐹 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋))) |
53 | 52 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ (𝐺 = ◡𝐹 → (◡𝐹 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋))) |
54 | 53 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝐺 = ◡𝐹 → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ ◡𝐹 ∈ (𝑌 RngHomo 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)))) |
55 | 51, 54 | sylan9bbr 510 |
. . . . . . . . 9
⊢ ((𝐺 = ◡𝐹 ∧ 𝜑) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)))) |
56 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → 𝐺 ∈ (𝑌 RngHomo 𝑋)) |
57 | 55, 56 | syl6bi 252 |
. . . . . . . 8
⊢ ((𝐺 = ◡𝐹 ∧ 𝜑) → (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐺 ∈ (𝑌 RngHomo 𝑋))) |
58 | 57 | com12 32 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑋 RngIsom 𝑌) → ((𝐺 = ◡𝐹 ∧ 𝜑) → 𝐺 ∈ (𝑌 RngHomo 𝑋))) |
59 | 58 | expdimp 452 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹) → (𝜑 → 𝐺 ∈ (𝑌 RngHomo 𝑋))) |
60 | 59 | impcom 407 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐺 ∈ (𝑌 RngHomo 𝑋)) |
61 | | coeq1 5755 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) |
62 | 61 | ad2antll 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) |
63 | 11, 15 | rngimf1o 45351 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) |
64 | 63 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) |
65 | | f1ococnv1 6728 |
. . . . . . 7
⊢ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
66 | 64, 65 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
67 | 62, 66 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
68 | 49, 60, 67 | jca31 514 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) |
69 | 51 | biimpcd 248 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑋 RngIsom 𝑌) → (𝜑 → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ ◡𝐹 ∈ (𝑌 RngHomo 𝑋)))) |
70 | 69 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹) → (𝜑 → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ ◡𝐹 ∈ (𝑌 RngHomo 𝑋)))) |
71 | 70 | impcom 407 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ ◡𝐹 ∈ (𝑌 RngHomo 𝑋))) |
72 | | eleq1 2826 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐺 ∈ (𝑌 RngHomo 𝑋) ↔ ◡𝐹 ∈ (𝑌 RngHomo 𝑋))) |
73 | 72 | ad2antll 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∈ (𝑌 RngHomo 𝑋) ↔ ◡𝐹 ∈ (𝑌 RngHomo 𝑋))) |
74 | 73 | anbi2d 628 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ ◡𝐹 ∈ (𝑌 RngHomo 𝑋)))) |
75 | 71, 74 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) |
76 | | coeq2 5756 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) |
77 | 76 | ad2antll 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) |
78 | | f1ococnv2 6726 |
. . . . . . 7
⊢ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝑌))) |
79 | 64, 78 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝑌))) |
80 | 77, 79 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) |
81 | 75, 67, 80 | jca31 514 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
82 | 68, 75, 81 | jca31 514 |
. . 3
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹)) → ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
83 | 47, 82 | impbida 797 |
. 2
⊢ (𝜑 → (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹))) |
84 | 10, 23, 83 | 3bitrd 304 |
1
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹))) |