MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcinv Structured version   Visualization version   GIF version

Theorem rngcinv 20577
Description: An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.)
Hypotheses
Ref Expression
rngcsect.c 𝐢 = (RngCatβ€˜π‘ˆ)
rngcsect.b 𝐡 = (Baseβ€˜πΆ)
rngcsect.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
rngcsect.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
rngcsect.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
rngcinv.n 𝑁 = (Invβ€˜πΆ)
Assertion
Ref Expression
rngcinv (πœ‘ β†’ (𝐹(π‘‹π‘π‘Œ)𝐺 ↔ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)))

Proof of Theorem rngcinv
StepHypRef Expression
1 rngcsect.b . . 3 𝐡 = (Baseβ€˜πΆ)
2 rngcinv.n . . 3 𝑁 = (Invβ€˜πΆ)
3 rngcsect.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
4 rngcsect.c . . . . 5 𝐢 = (RngCatβ€˜π‘ˆ)
54rngccat 20574 . . . 4 (π‘ˆ ∈ 𝑉 β†’ 𝐢 ∈ Cat)
63, 5syl 17 . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
7 rngcsect.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
8 rngcsect.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
9 eqid 2728 . . 3 (Sectβ€˜πΆ) = (Sectβ€˜πΆ)
101, 2, 6, 7, 8, 9isinv 17750 . 2 (πœ‘ β†’ (𝐹(π‘‹π‘π‘Œ)𝐺 ↔ (𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ∧ 𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹)))
11 eqid 2728 . . . . . 6 (Baseβ€˜π‘‹) = (Baseβ€˜π‘‹)
124, 1, 3, 7, 8, 11, 9rngcsect 20576 . . . . 5 (πœ‘ β†’ (𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))))
13 df-3an 1086 . . . . 5 ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ↔ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))))
1412, 13bitrdi 286 . . . 4 (πœ‘ β†’ (𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ↔ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))))
15 eqid 2728 . . . . . 6 (Baseβ€˜π‘Œ) = (Baseβ€˜π‘Œ)
164, 1, 3, 8, 7, 15, 9rngcsect 20576 . . . . 5 (πœ‘ β†’ (𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹 ↔ (𝐺 ∈ (π‘Œ RngHom 𝑋) ∧ 𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))))
17 3ancoma 1095 . . . . . 6 ((𝐺 ∈ (π‘Œ RngHom 𝑋) ∧ 𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))) ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))
18 df-3an 1086 . . . . . 6 ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))) ↔ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))
1917, 18bitri 274 . . . . 5 ((𝐺 ∈ (π‘Œ RngHom 𝑋) ∧ 𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))) ↔ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))
2016, 19bitrdi 286 . . . 4 (πœ‘ β†’ (𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))))
2114, 20anbi12d 630 . . 3 (πœ‘ β†’ ((𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ∧ 𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))))
22 anandi 674 . . 3 ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) ↔ ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))))
2321, 22bitrdi 286 . 2 (πœ‘ β†’ ((𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ∧ 𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))))
24 simplrl 775 . . . . . 6 (((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ 𝐹 ∈ (𝑋 RngHom π‘Œ))
2524adantl 480 . . . . 5 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ 𝐹 ∈ (𝑋 RngHom π‘Œ))
2611, 15rnghmf 20394 . . . . . . . . . 10 (𝐹 ∈ (𝑋 RngHom π‘Œ) β†’ 𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ))
2715, 11rnghmf 20394 . . . . . . . . . 10 (𝐺 ∈ (π‘Œ RngHom 𝑋) β†’ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹))
2826, 27anim12i 611 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) β†’ (𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)))
2928ad2antlr 725 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ (𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)))
30 simpr 483 . . . . . . . . 9 ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))) β†’ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))
3130adantl 480 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))
32 simpr 483 . . . . . . . . 9 (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) β†’ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
3332ad2antrl 726 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
3429, 31, 33jca32 514 . . . . . . 7 (((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ ((𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)) ∧ ((𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))))
3534adantl 480 . . . . . 6 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ ((𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)) ∧ ((𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))))
36 fcof1o 7311 . . . . . . 7 (((𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)) ∧ ((𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))) β†’ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ ◑𝐹 = 𝐺))
37 eqcom 2735 . . . . . . . 8 (◑𝐹 = 𝐺 ↔ 𝐺 = ◑𝐹)
3837anbi2i 621 . . . . . . 7 ((𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ ◑𝐹 = 𝐺) ↔ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ 𝐺 = ◑𝐹))
3936, 38sylib 217 . . . . . 6 (((𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)) ∧ ((𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))) β†’ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ 𝐺 = ◑𝐹))
4035, 39syl 17 . . . . 5 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ 𝐺 = ◑𝐹))
41 anass 467 . . . . 5 (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ)) ∧ 𝐺 = ◑𝐹) ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ 𝐺 = ◑𝐹)))
4225, 40, 41sylanbrc 581 . . . 4 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ)) ∧ 𝐺 = ◑𝐹))
4311, 15isrngim2 20399 . . . . . . 7 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝐹 ∈ (𝑋 RngIso π‘Œ) ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ))))
447, 8, 43syl2anc 582 . . . . . 6 (πœ‘ β†’ (𝐹 ∈ (𝑋 RngIso π‘Œ) ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ))))
4544anbi1d 629 . . . . 5 (πœ‘ β†’ ((𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹) ↔ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ)) ∧ 𝐺 = ◑𝐹)))
4645adantr 479 . . . 4 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ ((𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹) ↔ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ)) ∧ 𝐺 = ◑𝐹)))
4742, 46mpbird 256 . . 3 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹))
4811, 15rngimrnghm 20401 . . . . . 6 (𝐹 ∈ (𝑋 RngIso π‘Œ) β†’ 𝐹 ∈ (𝑋 RngHom π‘Œ))
4948ad2antrl 726 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ 𝐹 ∈ (𝑋 RngHom π‘Œ))
50 isrngim 20391 . . . . . . . . . . 11 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝐹 ∈ (𝑋 RngIso π‘Œ) ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RngHom 𝑋))))
517, 8, 50syl2anc 582 . . . . . . . . . 10 (πœ‘ β†’ (𝐹 ∈ (𝑋 RngIso π‘Œ) ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RngHom 𝑋))))
52 eleq1 2817 . . . . . . . . . . . 12 (◑𝐹 = 𝐺 β†’ (◑𝐹 ∈ (π‘Œ RngHom 𝑋) ↔ 𝐺 ∈ (π‘Œ RngHom 𝑋)))
5352eqcoms 2736 . . . . . . . . . . 11 (𝐺 = ◑𝐹 β†’ (◑𝐹 ∈ (π‘Œ RngHom 𝑋) ↔ 𝐺 ∈ (π‘Œ RngHom 𝑋)))
5453anbi2d 628 . . . . . . . . . 10 (𝐺 = ◑𝐹 β†’ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RngHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))))
5551, 54sylan9bbr 509 . . . . . . . . 9 ((𝐺 = ◑𝐹 ∧ πœ‘) β†’ (𝐹 ∈ (𝑋 RngIso π‘Œ) ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))))
56 simpr 483 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) β†’ 𝐺 ∈ (π‘Œ RngHom 𝑋))
5755, 56biimtrdi 252 . . . . . . . 8 ((𝐺 = ◑𝐹 ∧ πœ‘) β†’ (𝐹 ∈ (𝑋 RngIso π‘Œ) β†’ 𝐺 ∈ (π‘Œ RngHom 𝑋)))
5857com12 32 . . . . . . 7 (𝐹 ∈ (𝑋 RngIso π‘Œ) β†’ ((𝐺 = ◑𝐹 ∧ πœ‘) β†’ 𝐺 ∈ (π‘Œ RngHom 𝑋)))
5958expdimp 451 . . . . . 6 ((𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹) β†’ (πœ‘ β†’ 𝐺 ∈ (π‘Œ RngHom 𝑋)))
6059impcom 406 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ 𝐺 ∈ (π‘Œ RngHom 𝑋))
61 coeq1 5864 . . . . . . 7 (𝐺 = ◑𝐹 β†’ (𝐺 ∘ 𝐹) = (◑𝐹 ∘ 𝐹))
6261ad2antll 727 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐺 ∘ 𝐹) = (◑𝐹 ∘ 𝐹))
6311, 15rngimf1o 20400 . . . . . . . 8 (𝐹 ∈ (𝑋 RngIso π‘Œ) β†’ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ))
6463ad2antrl 726 . . . . . . 7 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ))
65 f1ococnv1 6873 . . . . . . 7 (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) β†’ (◑𝐹 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
6664, 65syl 17 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (◑𝐹 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
6762, 66eqtrd 2768 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
6849, 60, 67jca31 513 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))))
6951biimpcd 248 . . . . . . 7 (𝐹 ∈ (𝑋 RngIso π‘Œ) β†’ (πœ‘ β†’ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RngHom 𝑋))))
7069adantr 479 . . . . . 6 ((𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹) β†’ (πœ‘ β†’ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RngHom 𝑋))))
7170impcom 406 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RngHom 𝑋)))
72 eleq1 2817 . . . . . . 7 (𝐺 = ◑𝐹 β†’ (𝐺 ∈ (π‘Œ RngHom 𝑋) ↔ ◑𝐹 ∈ (π‘Œ RngHom 𝑋)))
7372ad2antll 727 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐺 ∈ (π‘Œ RngHom 𝑋) ↔ ◑𝐹 ∈ (π‘Œ RngHom 𝑋)))
7473anbi2d 628 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ ((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RngHom 𝑋))))
7571, 74mpbird 256 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)))
76 coeq2 5865 . . . . . . 7 (𝐺 = ◑𝐹 β†’ (𝐹 ∘ 𝐺) = (𝐹 ∘ ◑𝐹))
7776ad2antll 727 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∘ 𝐺) = (𝐹 ∘ ◑𝐹))
78 f1ococnv2 6871 . . . . . . 7 (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) β†’ (𝐹 ∘ ◑𝐹) = ( I β†Ύ (Baseβ€˜π‘Œ)))
7964, 78syl 17 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∘ ◑𝐹) = ( I β†Ύ (Baseβ€˜π‘Œ)))
8077, 79eqtrd 2768 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))
8175, 67, 80jca31 513 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))
8268, 75, 81jca31 513 . . 3 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ ((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))))
8347, 82impbida 799 . 2 (πœ‘ β†’ (((((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) ↔ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)))
8410, 23, 833bitrd 304 1 (πœ‘ β†’ (𝐹(π‘‹π‘π‘Œ)𝐺 ↔ (𝐹 ∈ (𝑋 RngIso π‘Œ) ∧ 𝐺 = ◑𝐹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5152   I cid 5579  β—‘ccnv 5681   β†Ύ cres 5684   ∘ ccom 5686  βŸΆwf 6549  β€“1-1-ontoβ†’wf1o 6552  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  Catccat 17651  Sectcsect 17734  Invcinv 17735   RngHom crnghm 20380   RngIso crngim 20381  RngCatcrngc 20556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-hom 17264  df-cco 17265  df-0g 17430  df-cat 17655  df-cid 17656  df-homf 17657  df-sect 17737  df-inv 17738  df-ssc 17800  df-resc 17801  df-subc 17802  df-estrc 18120  df-mgm 18607  df-mgmhm 18659  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-grp 18900  df-ghm 19175  df-abl 19745  df-mgp 20082  df-rng 20100  df-rnghm 20382  df-rngim 20383  df-rngc 20557
This theorem is referenced by:  rngciso  20578
  Copyright terms: Public domain W3C validator