Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcinv Structured version   Visualization version   GIF version

Theorem rngcinv 45427
Description: An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.)
Hypotheses
Ref Expression
rngcsect.c 𝐶 = (RngCat‘𝑈)
rngcsect.b 𝐵 = (Base‘𝐶)
rngcsect.u (𝜑𝑈𝑉)
rngcsect.x (𝜑𝑋𝐵)
rngcsect.y (𝜑𝑌𝐵)
rngcinv.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
rngcinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))

Proof of Theorem rngcinv
StepHypRef Expression
1 rngcsect.b . . 3 𝐵 = (Base‘𝐶)
2 rngcinv.n . . 3 𝑁 = (Inv‘𝐶)
3 rngcsect.u . . . 4 (𝜑𝑈𝑉)
4 rngcsect.c . . . . 5 𝐶 = (RngCat‘𝑈)
54rngccat 45424 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 rngcsect.x . . 3 (𝜑𝑋𝐵)
8 rngcsect.y . . 3 (𝜑𝑌𝐵)
9 eqid 2738 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 6, 7, 8, 9isinv 17389 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
11 eqid 2738 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
124, 1, 3, 7, 8, 11, 9rngcsect 45426 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
13 df-3an 1087 . . . . 5 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
1412, 13bitrdi 286 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
15 eqid 2738 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
164, 1, 3, 8, 7, 15, 9rngcsect 45426 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
17 3ancoma 1096 . . . . . 6 ((𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
18 df-3an 1087 . . . . . 6 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
1917, 18bitri 274 . . . . 5 ((𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
2016, 19bitrdi 286 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2114, 20anbi12d 630 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
22 anandi 672 . . 3 ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2321, 22bitrdi 286 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
24 simplrl 773 . . . . . 6 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
2524adantl 481 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
2611, 15rnghmf 45345 . . . . . . . . . 10 (𝐹 ∈ (𝑋 RngHomo 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
2715, 11rnghmf 45345 . . . . . . . . . 10 (𝐺 ∈ (𝑌 RngHomo 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
2826, 27anim12i 612 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
2928ad2antlr 723 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
30 simpr 484 . . . . . . . . 9 ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
3130adantl 481 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
32 simpr 484 . . . . . . . . 9 (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3332ad2antrl 724 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3429, 31, 33jca32 515 . . . . . . 7 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
3534adantl 481 . . . . . 6 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
36 fcof1o 7148 . . . . . . 7 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺))
37 eqcom 2745 . . . . . . . 8 (𝐹 = 𝐺𝐺 = 𝐹)
3837anbi2i 622 . . . . . . 7 ((𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺) ↔ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
3936, 38sylib 217 . . . . . 6 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
4035, 39syl 17 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
41 anass 468 . . . . 5 (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹)))
4225, 40, 41sylanbrc 582 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹))
4311, 15isrngim 45350 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
447, 8, 43syl2anc 583 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
4544anbi1d 629 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4645adantr 480 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4742, 46mpbird 256 . . 3 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹))
4811, 15rngimrnghm 45352 . . . . . 6 (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
4948ad2antrl 724 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
50 isrngisom 45342 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
517, 8, 50syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
52 eleq1 2826 . . . . . . . . . . . 12 (𝐹 = 𝐺 → (𝐹 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5352eqcoms 2746 . . . . . . . . . . 11 (𝐺 = 𝐹 → (𝐹 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5453anbi2d 628 . . . . . . . . . 10 (𝐺 = 𝐹 → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))))
5551, 54sylan9bbr 510 . . . . . . . . 9 ((𝐺 = 𝐹𝜑) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))))
56 simpr 484 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → 𝐺 ∈ (𝑌 RngHomo 𝑋))
5755, 56syl6bi 252 . . . . . . . 8 ((𝐺 = 𝐹𝜑) → (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5857com12 32 . . . . . . 7 (𝐹 ∈ (𝑋 RngIsom 𝑌) → ((𝐺 = 𝐹𝜑) → 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5958expdimp 452 . . . . . 6 ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) → (𝜑𝐺 ∈ (𝑌 RngHomo 𝑋)))
6059impcom 407 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → 𝐺 ∈ (𝑌 RngHomo 𝑋))
61 coeq1 5755 . . . . . . 7 (𝐺 = 𝐹 → (𝐺𝐹) = (𝐹𝐹))
6261ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
6311, 15rngimf1o 45351 . . . . . . . 8 (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
6463ad2antrl 724 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
65 f1ococnv1 6728 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6664, 65syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6762, 66eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
6849, 60, 67jca31 514 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
6951biimpcd 248 . . . . . . 7 (𝐹 ∈ (𝑋 RngIsom 𝑌) → (𝜑 → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
7069adantr 480 . . . . . 6 ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) → (𝜑 → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
7170impcom 407 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋)))
72 eleq1 2826 . . . . . . 7 (𝐺 = 𝐹 → (𝐺 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐹 ∈ (𝑌 RngHomo 𝑋)))
7372ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐹 ∈ (𝑌 RngHomo 𝑋)))
7473anbi2d 628 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
7571, 74mpbird 256 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
76 coeq2 5756 . . . . . . 7 (𝐺 = 𝐹 → (𝐹𝐺) = (𝐹𝐹))
7776ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
78 f1ococnv2 6726 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
7964, 78syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
8077, 79eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
8175, 67, 80jca31 514 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
8268, 75, 81jca31 514 . . 3 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
8347, 82impbida 797 . 2 (𝜑 → (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))
8410, 23, 833bitrd 304 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070   I cid 5479  ccnv 5579  cres 5582  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  Catccat 17290  Sectcsect 17373  Invcinv 17374   RngHomo crngh 45331   RngIsom crngs 45332  RngCatcrngc 45403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-hom 16912  df-cco 16913  df-0g 17069  df-cat 17294  df-cid 17295  df-homf 17296  df-sect 17376  df-inv 17377  df-ssc 17439  df-resc 17440  df-subc 17441  df-estrc 17755  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-ghm 18747  df-abl 19304  df-mgp 19636  df-mgmhm 45221  df-rng0 45321  df-rnghomo 45333  df-rngisom 45334  df-rngc 45405
This theorem is referenced by:  rngciso  45428
  Copyright terms: Public domain W3C validator