MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcinv Structured version   Visualization version   GIF version

Theorem setcinv 17976
Description: An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcinv.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
setcinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))

Proof of Theorem setcinv
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐶) = (Base‘𝐶)
2 setcinv.n . . 3 𝑁 = (Inv‘𝐶)
3 setcmon.u . . . 4 (𝜑𝑈𝑉)
4 setcmon.c . . . . 5 𝐶 = (SetCat‘𝑈)
54setccat 17971 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 setcmon.x . . . 4 (𝜑𝑋𝑈)
84, 3setcbas 17964 . . . 4 (𝜑𝑈 = (Base‘𝐶))
97, 8eleqtrd 2840 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
10 setcmon.y . . . 4 (𝜑𝑌𝑈)
1110, 8eleqtrd 2840 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
12 eqid 2736 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
131, 2, 6, 9, 11, 12isinv 17643 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
144, 3, 7, 10, 12setcsect 17975 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
15 df-3an 1089 . . . . 5 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)))
1614, 15bitrdi 286 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
174, 3, 10, 7, 12setcsect 17975 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
18 3ancoma 1098 . . . . . 6 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
19 df-3an 1089 . . . . . 6 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2018, 19bitri 274 . . . . 5 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2117, 20bitrdi 286 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2216, 21anbi12d 631 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
23 anandi 674 . . 3 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2422, 23bitr4di 288 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
25 fcof1o 7242 . . . . . 6 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺))
26 eqcom 2743 . . . . . . 7 (𝐹 = 𝐺𝐺 = 𝐹)
2726anbi2i 623 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2825, 27sylib 217 . . . . 5 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2928ancom2s 648 . . . 4 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
3029adantl 482 . . 3 ((𝜑 ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
31 f1of 6784 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
3231ad2antrl 726 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑋𝑌)
33 f1ocnv 6796 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
3433ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑌1-1-onto𝑋)
35 f1oeq1 6772 . . . . . . 7 (𝐺 = 𝐹 → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3635ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3734, 36mpbird 256 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌1-1-onto𝑋)
38 f1of 6784 . . . . 5 (𝐺:𝑌1-1-onto𝑋𝐺:𝑌𝑋)
3937, 38syl 17 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌𝑋)
40 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺 = 𝐹)
4140coeq1d 5817 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
42 f1ococnv1 6813 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑋))
4342ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑋))
4441, 43eqtrd 2776 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ 𝑋))
4540coeq2d 5818 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
46 f1ococnv2 6811 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑌))
4746ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑌))
4845, 47eqtrd 2776 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ 𝑌))
4944, 48jca 512 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
5032, 39, 49jca31 515 . . 3 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
5130, 50impbida 799 . 2 (𝜑 → (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
5213, 24, 513bitrd 304 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105   I cid 5530  ccnv 5632  cres 5635  ccom 5637  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Basecbs 17083  Catccat 17544  Sectcsect 17627  Invcinv 17628  SetCatcsetc 17961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-hom 17157  df-cco 17158  df-cat 17548  df-cid 17549  df-sect 17630  df-inv 17631  df-setc 17962
This theorem is referenced by:  setciso  17977  yonedainv  18170
  Copyright terms: Public domain W3C validator