MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcinv Structured version   Visualization version   GIF version

Theorem setcinv 17994
Description: An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcinv.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
setcinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))

Proof of Theorem setcinv
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐶) = (Base‘𝐶)
2 setcinv.n . . 3 𝑁 = (Inv‘𝐶)
3 setcmon.u . . . 4 (𝜑𝑈𝑉)
4 setcmon.c . . . . 5 𝐶 = (SetCat‘𝑈)
54setccat 17989 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 setcmon.x . . . 4 (𝜑𝑋𝑈)
84, 3setcbas 17982 . . . 4 (𝜑𝑈 = (Base‘𝐶))
97, 8eleqtrd 2833 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
10 setcmon.y . . . 4 (𝜑𝑌𝑈)
1110, 8eleqtrd 2833 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
12 eqid 2731 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
131, 2, 6, 9, 11, 12isinv 17664 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
144, 3, 7, 10, 12setcsect 17993 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
15 df-3an 1088 . . . . 5 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)))
1614, 15bitrdi 287 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
174, 3, 10, 7, 12setcsect 17993 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
18 3ancoma 1097 . . . . . 6 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
19 df-3an 1088 . . . . . 6 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2018, 19bitri 275 . . . . 5 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2117, 20bitrdi 287 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2216, 21anbi12d 632 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
23 anandi 676 . . 3 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2422, 23bitr4di 289 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
25 fcof1o 7230 . . . . . 6 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺))
26 eqcom 2738 . . . . . . 7 (𝐹 = 𝐺𝐺 = 𝐹)
2726anbi2i 623 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2825, 27sylib 218 . . . . 5 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2928ancom2s 650 . . . 4 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
3029adantl 481 . . 3 ((𝜑 ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
31 f1of 6763 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
3231ad2antrl 728 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑋𝑌)
33 f1ocnv 6775 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
3433ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑌1-1-onto𝑋)
35 f1oeq1 6751 . . . . . . 7 (𝐺 = 𝐹 → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3635ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3734, 36mpbird 257 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌1-1-onto𝑋)
38 f1of 6763 . . . . 5 (𝐺:𝑌1-1-onto𝑋𝐺:𝑌𝑋)
3937, 38syl 17 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌𝑋)
40 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺 = 𝐹)
4140coeq1d 5801 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
42 f1ococnv1 6792 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑋))
4342ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑋))
4441, 43eqtrd 2766 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ 𝑋))
4540coeq2d 5802 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
46 f1ococnv2 6790 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑌))
4746ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑌))
4845, 47eqtrd 2766 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ 𝑌))
4944, 48jca 511 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
5032, 39, 49jca31 514 . . 3 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
5130, 50impbida 800 . 2 (𝜑 → (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
5213, 24, 513bitrd 305 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091   I cid 5510  ccnv 5615  cres 5618  ccom 5620  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17117  Catccat 17567  Sectcsect 17648  Invcinv 17649  SetCatcsetc 17979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-hom 17182  df-cco 17183  df-cat 17571  df-cid 17572  df-sect 17651  df-inv 17652  df-setc 17980
This theorem is referenced by:  setciso  17995  yonedainv  18184
  Copyright terms: Public domain W3C validator