MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcinv Structured version   Visualization version   GIF version

Theorem setcinv 18050
Description: An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcinv.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
setcinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))

Proof of Theorem setcinv
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐶) = (Base‘𝐶)
2 setcinv.n . . 3 𝑁 = (Inv‘𝐶)
3 setcmon.u . . . 4 (𝜑𝑈𝑉)
4 setcmon.c . . . . 5 𝐶 = (SetCat‘𝑈)
54setccat 18045 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 setcmon.x . . . 4 (𝜑𝑋𝑈)
84, 3setcbas 18038 . . . 4 (𝜑𝑈 = (Base‘𝐶))
97, 8eleqtrd 2834 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
10 setcmon.y . . . 4 (𝜑𝑌𝑈)
1110, 8eleqtrd 2834 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
12 eqid 2731 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
131, 2, 6, 9, 11, 12isinv 17714 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
144, 3, 7, 10, 12setcsect 18049 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
15 df-3an 1088 . . . . 5 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)))
1614, 15bitrdi 287 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
174, 3, 10, 7, 12setcsect 18049 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
18 3ancoma 1097 . . . . . 6 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
19 df-3an 1088 . . . . . 6 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2018, 19bitri 275 . . . . 5 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2117, 20bitrdi 287 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2216, 21anbi12d 630 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
23 anandi 673 . . 3 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2422, 23bitr4di 289 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
25 fcof1o 7297 . . . . . 6 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺))
26 eqcom 2738 . . . . . . 7 (𝐹 = 𝐺𝐺 = 𝐹)
2726anbi2i 622 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2825, 27sylib 217 . . . . 5 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2928ancom2s 647 . . . 4 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
3029adantl 481 . . 3 ((𝜑 ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
31 f1of 6833 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
3231ad2antrl 725 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑋𝑌)
33 f1ocnv 6845 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
3433ad2antrl 725 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑌1-1-onto𝑋)
35 f1oeq1 6821 . . . . . . 7 (𝐺 = 𝐹 → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3635ad2antll 726 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3734, 36mpbird 257 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌1-1-onto𝑋)
38 f1of 6833 . . . . 5 (𝐺:𝑌1-1-onto𝑋𝐺:𝑌𝑋)
3937, 38syl 17 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌𝑋)
40 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺 = 𝐹)
4140coeq1d 5861 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
42 f1ococnv1 6862 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑋))
4342ad2antrl 725 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑋))
4441, 43eqtrd 2771 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ 𝑋))
4540coeq2d 5862 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
46 f1ococnv2 6860 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑌))
4746ad2antrl 725 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑌))
4845, 47eqtrd 2771 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ 𝑌))
4944, 48jca 511 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
5032, 39, 49jca31 514 . . 3 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
5130, 50impbida 798 . 2 (𝜑 → (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
5213, 24, 513bitrd 305 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5148   I cid 5573  ccnv 5675  cres 5678  ccom 5680  wf 6539  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412  Basecbs 17151  Catccat 17615  Sectcsect 17698  Invcinv 17699  SetCatcsetc 18035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-hom 17228  df-cco 17229  df-cat 17619  df-cid 17620  df-sect 17701  df-inv 17702  df-setc 18036
This theorem is referenced by:  setciso  18051  yonedainv  18244
  Copyright terms: Public domain W3C validator