MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcinv Structured version   Visualization version   GIF version

Theorem setcinv 18108
Description: An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcinv.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
setcinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))

Proof of Theorem setcinv
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐶) = (Base‘𝐶)
2 setcinv.n . . 3 𝑁 = (Inv‘𝐶)
3 setcmon.u . . . 4 (𝜑𝑈𝑉)
4 setcmon.c . . . . 5 𝐶 = (SetCat‘𝑈)
54setccat 18103 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 setcmon.x . . . 4 (𝜑𝑋𝑈)
84, 3setcbas 18096 . . . 4 (𝜑𝑈 = (Base‘𝐶))
97, 8eleqtrd 2837 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
10 setcmon.y . . . 4 (𝜑𝑌𝑈)
1110, 8eleqtrd 2837 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
12 eqid 2736 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
131, 2, 6, 9, 11, 12isinv 17778 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
144, 3, 7, 10, 12setcsect 18107 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
15 df-3an 1088 . . . . 5 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)))
1614, 15bitrdi 287 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
174, 3, 10, 7, 12setcsect 18107 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
18 3ancoma 1097 . . . . . 6 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
19 df-3an 1088 . . . . . 6 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2018, 19bitri 275 . . . . 5 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2117, 20bitrdi 287 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2216, 21anbi12d 632 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
23 anandi 676 . . 3 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2422, 23bitr4di 289 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
25 fcof1o 7294 . . . . . 6 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺))
26 eqcom 2743 . . . . . . 7 (𝐹 = 𝐺𝐺 = 𝐹)
2726anbi2i 623 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2825, 27sylib 218 . . . . 5 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2928ancom2s 650 . . . 4 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
3029adantl 481 . . 3 ((𝜑 ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
31 f1of 6823 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
3231ad2antrl 728 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑋𝑌)
33 f1ocnv 6835 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
3433ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑌1-1-onto𝑋)
35 f1oeq1 6811 . . . . . . 7 (𝐺 = 𝐹 → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3635ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3734, 36mpbird 257 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌1-1-onto𝑋)
38 f1of 6823 . . . . 5 (𝐺:𝑌1-1-onto𝑋𝐺:𝑌𝑋)
3937, 38syl 17 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌𝑋)
40 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺 = 𝐹)
4140coeq1d 5846 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
42 f1ococnv1 6852 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑋))
4342ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑋))
4441, 43eqtrd 2771 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ 𝑋))
4540coeq2d 5847 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
46 f1ococnv2 6850 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑌))
4746ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑌))
4845, 47eqtrd 2771 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ 𝑌))
4944, 48jca 511 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
5032, 39, 49jca31 514 . . 3 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
5130, 50impbida 800 . 2 (𝜑 → (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
5213, 24, 513bitrd 305 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124   I cid 5552  ccnv 5658  cres 5661  ccom 5663  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Basecbs 17233  Catccat 17681  Sectcsect 17762  Invcinv 17763  SetCatcsetc 18093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-cat 17685  df-cid 17686  df-sect 17765  df-inv 17766  df-setc 18094
This theorem is referenced by:  setciso  18109  yonedainv  18298
  Copyright terms: Public domain W3C validator