MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcinv Structured version   Visualization version   GIF version

Theorem setcinv 17349
Description: An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcinv.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
setcinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))

Proof of Theorem setcinv
StepHypRef Expression
1 eqid 2821 . . 3 (Base‘𝐶) = (Base‘𝐶)
2 setcinv.n . . 3 𝑁 = (Inv‘𝐶)
3 setcmon.u . . . 4 (𝜑𝑈𝑉)
4 setcmon.c . . . . 5 𝐶 = (SetCat‘𝑈)
54setccat 17344 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 setcmon.x . . . 4 (𝜑𝑋𝑈)
84, 3setcbas 17337 . . . 4 (𝜑𝑈 = (Base‘𝐶))
97, 8eleqtrd 2915 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
10 setcmon.y . . . 4 (𝜑𝑌𝑈)
1110, 8eleqtrd 2915 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
12 eqid 2821 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
131, 2, 6, 9, 11, 12isinv 17029 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
144, 3, 7, 10, 12setcsect 17348 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
15 df-3an 1085 . . . . 5 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)))
1614, 15syl6bb 289 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
174, 3, 10, 7, 12setcsect 17348 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
18 3ancoma 1094 . . . . . 6 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
19 df-3an 1085 . . . . . 6 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2018, 19bitri 277 . . . . 5 ((𝐺:𝑌𝑋𝐹:𝑋𝑌 ∧ (𝐹𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
2117, 20syl6bb 289 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2216, 21anbi12d 632 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
23 anandi 674 . . 3 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
2422, 23syl6bbr 291 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))))
25 fcof1o 7051 . . . . . 6 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺))
26 eqcom 2828 . . . . . . 7 (𝐹 = 𝐺𝐺 = 𝐹)
2726anbi2i 624 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌𝐹 = 𝐺) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2825, 27sylib 220 . . . . 5 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐹𝐺) = ( I ↾ 𝑌) ∧ (𝐺𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
2928ancom2s 648 . . . 4 (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
3029adantl 484 . . 3 ((𝜑 ∧ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))) → (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹))
31 f1of 6614 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
3231ad2antrl 726 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑋𝑌)
33 f1ocnv 6626 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
3433ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐹:𝑌1-1-onto𝑋)
35 f1oeq1 6603 . . . . . . 7 (𝐺 = 𝐹 → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3635ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺:𝑌1-1-onto𝑋𝐹:𝑌1-1-onto𝑋))
3734, 36mpbird 259 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌1-1-onto𝑋)
38 f1of 6614 . . . . 5 (𝐺:𝑌1-1-onto𝑋𝐺:𝑌𝑋)
3937, 38syl 17 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺:𝑌𝑋)
40 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → 𝐺 = 𝐹)
4140coeq1d 5731 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
42 f1ococnv1 6642 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑋))
4342ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑋))
4441, 43eqtrd 2856 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ 𝑋))
4540coeq2d 5732 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
46 f1ococnv2 6640 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌 → (𝐹𝐹) = ( I ↾ 𝑌))
4746ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ 𝑌))
4845, 47eqtrd 2856 . . . . 5 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ 𝑌))
4944, 48jca 514 . . . 4 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌)))
5032, 39, 49jca31 517 . . 3 ((𝜑 ∧ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)) → ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))))
5130, 50impbida 799 . 2 (𝜑 → (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ ((𝐺𝐹) = ( I ↾ 𝑋) ∧ (𝐹𝐺) = ( I ↾ 𝑌))) ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
5213, 24, 513bitrd 307 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋1-1-onto𝑌𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5065   I cid 5458  ccnv 5553  cres 5556  ccom 5558  wf 6350  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  Basecbs 16482  Catccat 16934  Sectcsect 17013  Invcinv 17014  SetCatcsetc 17334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-hom 16588  df-cco 16589  df-cat 16938  df-cid 16939  df-sect 17016  df-inv 17017  df-setc 17335
This theorem is referenced by:  setciso  17350  yonedainv  17530
  Copyright terms: Public domain W3C validator