Proof of Theorem setcinv
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
2 | | setcinv.n |
. . 3
⊢ 𝑁 = (Inv‘𝐶) |
3 | | setcmon.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
4 | | setcmon.c |
. . . . 5
⊢ 𝐶 = (SetCat‘𝑈) |
5 | 4 | setccat 17716 |
. . . 4
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | | setcmon.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
8 | 4, 3 | setcbas 17709 |
. . . 4
⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
9 | 7, 8 | eleqtrd 2841 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
10 | | setcmon.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑈) |
11 | 10, 8 | eleqtrd 2841 |
. . 3
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
12 | | eqid 2738 |
. . 3
⊢
(Sect‘𝐶) =
(Sect‘𝐶) |
13 | 1, 2, 6, 9, 11, 12 | isinv 17389 |
. 2
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) |
14 | 4, 3, 7, 10, 12 | setcsect 17720 |
. . . . 5
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
15 | | df-3an 1087 |
. . . . 5
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) |
16 | 14, 15 | bitrdi 286 |
. . . 4
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
17 | 4, 3, 10, 7, 12 | setcsect 17720 |
. . . . 5
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺:𝑌⟶𝑋 ∧ 𝐹:𝑋⟶𝑌 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) |
18 | | 3ancoma 1096 |
. . . . . 6
⊢ ((𝐺:𝑌⟶𝑋 ∧ 𝐹:𝑋⟶𝑌 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) |
19 | | df-3an 1087 |
. . . . . 6
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) |
20 | 18, 19 | bitri 274 |
. . . . 5
⊢ ((𝐺:𝑌⟶𝑋 ∧ 𝐹:𝑋⟶𝑌 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) |
21 | 17, 20 | bitrdi 286 |
. . . 4
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) |
22 | 16, 21 | anbi12d 630 |
. . 3
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))))) |
23 | | anandi 672 |
. . 3
⊢ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) ↔ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) |
24 | 22, 23 | bitr4di 288 |
. 2
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))))) |
25 | | fcof1o 7148 |
. . . . . 6
⊢ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝑌) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = 𝐺)) |
26 | | eqcom 2745 |
. . . . . . 7
⊢ (◡𝐹 = 𝐺 ↔ 𝐺 = ◡𝐹) |
27 | 26 | anbi2i 622 |
. . . . . 6
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = 𝐺) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) |
28 | 25, 27 | sylib 217 |
. . . . 5
⊢ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝑌) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) |
29 | 28 | ancom2s 646 |
. . . 4
⊢ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) → (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) |
30 | 29 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) → (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) |
31 | | f1of 6700 |
. . . . 5
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋⟶𝑌) |
32 | 31 | ad2antrl 724 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → 𝐹:𝑋⟶𝑌) |
33 | | f1ocnv 6712 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
34 | 33 | ad2antrl 724 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → ◡𝐹:𝑌–1-1-onto→𝑋) |
35 | | f1oeq1 6688 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐺:𝑌–1-1-onto→𝑋 ↔ ◡𝐹:𝑌–1-1-onto→𝑋)) |
36 | 35 | ad2antll 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐺:𝑌–1-1-onto→𝑋 ↔ ◡𝐹:𝑌–1-1-onto→𝑋)) |
37 | 34, 36 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → 𝐺:𝑌–1-1-onto→𝑋) |
38 | | f1of 6700 |
. . . . 5
⊢ (𝐺:𝑌–1-1-onto→𝑋 → 𝐺:𝑌⟶𝑋) |
39 | 37, 38 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → 𝐺:𝑌⟶𝑋) |
40 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → 𝐺 = ◡𝐹) |
41 | 40 | coeq1d 5759 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) |
42 | | f1ococnv1 6728 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝑋)) |
43 | 42 | ad2antrl 724 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝑋)) |
44 | 41, 43 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) |
45 | 40 | coeq2d 5760 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) |
46 | | f1ococnv2 6726 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝑌)) |
47 | 46 | ad2antrl 724 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝑌)) |
48 | 45, 47 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)) |
49 | 44, 48 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) |
50 | 32, 39, 49 | jca31 514 |
. . 3
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) |
51 | 30, 50 | impbida 797 |
. 2
⊢ (𝜑 → (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹))) |
52 | 13, 24, 51 | 3bitrd 304 |
1
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹))) |