Proof of Theorem setcinv
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 2 | | setcinv.n |
. . 3
⊢ 𝑁 = (Inv‘𝐶) |
| 3 | | setcmon.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 4 | | setcmon.c |
. . . . 5
⊢ 𝐶 = (SetCat‘𝑈) |
| 5 | 4 | setccat 18103 |
. . . 4
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | | setcmon.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 8 | 4, 3 | setcbas 18096 |
. . . 4
⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
| 9 | 7, 8 | eleqtrd 2837 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 10 | | setcmon.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| 11 | 10, 8 | eleqtrd 2837 |
. . 3
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 12 | | eqid 2736 |
. . 3
⊢
(Sect‘𝐶) =
(Sect‘𝐶) |
| 13 | 1, 2, 6, 9, 11, 12 | isinv 17778 |
. 2
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) |
| 14 | 4, 3, 7, 10, 12 | setcsect 18107 |
. . . . 5
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 15 | | df-3an 1088 |
. . . . 5
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) |
| 16 | 14, 15 | bitrdi 287 |
. . . 4
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 17 | 4, 3, 10, 7, 12 | setcsect 18107 |
. . . . 5
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺:𝑌⟶𝑋 ∧ 𝐹:𝑋⟶𝑌 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) |
| 18 | | 3ancoma 1097 |
. . . . . 6
⊢ ((𝐺:𝑌⟶𝑋 ∧ 𝐹:𝑋⟶𝑌 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) |
| 19 | | df-3an 1088 |
. . . . . 6
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) |
| 20 | 18, 19 | bitri 275 |
. . . . 5
⊢ ((𝐺:𝑌⟶𝑋 ∧ 𝐹:𝑋⟶𝑌 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) |
| 21 | 17, 20 | bitrdi 287 |
. . . 4
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) |
| 22 | 16, 21 | anbi12d 632 |
. . 3
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))))) |
| 23 | | anandi 676 |
. . 3
⊢ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) ↔ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ∧ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) |
| 24 | 22, 23 | bitr4di 289 |
. 2
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))))) |
| 25 | | fcof1o 7294 |
. . . . . 6
⊢ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝑌) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = 𝐺)) |
| 26 | | eqcom 2743 |
. . . . . . 7
⊢ (◡𝐹 = 𝐺 ↔ 𝐺 = ◡𝐹) |
| 27 | 26 | anbi2i 623 |
. . . . . 6
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = 𝐺) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) |
| 28 | 25, 27 | sylib 218 |
. . . . 5
⊢ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝑌) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) → (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) |
| 29 | 28 | ancom2s 650 |
. . . 4
⊢ (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) → (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) |
| 30 | 29 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) → (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) |
| 31 | | f1of 6823 |
. . . . 5
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋⟶𝑌) |
| 32 | 31 | ad2antrl 728 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → 𝐹:𝑋⟶𝑌) |
| 33 | | f1ocnv 6835 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
| 34 | 33 | ad2antrl 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → ◡𝐹:𝑌–1-1-onto→𝑋) |
| 35 | | f1oeq1 6811 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐺:𝑌–1-1-onto→𝑋 ↔ ◡𝐹:𝑌–1-1-onto→𝑋)) |
| 36 | 35 | ad2antll 729 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐺:𝑌–1-1-onto→𝑋 ↔ ◡𝐹:𝑌–1-1-onto→𝑋)) |
| 37 | 34, 36 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → 𝐺:𝑌–1-1-onto→𝑋) |
| 38 | | f1of 6823 |
. . . . 5
⊢ (𝐺:𝑌–1-1-onto→𝑋 → 𝐺:𝑌⟶𝑋) |
| 39 | 37, 38 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → 𝐺:𝑌⟶𝑋) |
| 40 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → 𝐺 = ◡𝐹) |
| 41 | 40 | coeq1d 5846 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) |
| 42 | | f1ococnv1 6852 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝑋)) |
| 43 | 42 | ad2antrl 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝑋)) |
| 44 | 41, 43 | eqtrd 2771 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) |
| 45 | 40 | coeq2d 5847 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) |
| 46 | | f1ococnv2 6850 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝑌)) |
| 47 | 46 | ad2antrl 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝑌)) |
| 48 | 45, 47 | eqtrd 2771 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)) |
| 49 | 44, 48 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) |
| 50 | 32, 39, 49 | jca31 514 |
. . 3
⊢ ((𝜑 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹)) → ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌)))) |
| 51 | 30, 50 | impbida 800 |
. 2
⊢ (𝜑 → (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ ((𝐺 ∘ 𝐹) = ( I ↾ 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝑌))) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹))) |
| 52 | 13, 24, 51 | 3bitrd 305 |
1
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ 𝐺 = ◡𝐹))) |