Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineext Structured version   Visualization version   GIF version

Theorem lineext 33686
 Description: Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.)
Assertion
Ref Expression
lineext ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
Distinct variable groups:   𝑓,𝑁   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸

Proof of Theorem lineext
StepHypRef Expression
1 brcolinear 33669 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
213adant3 1129 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
32anbi1d 632 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ↔ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)))
4 simp1 1133 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
5 simp3r 1199 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
6 simp3l 1198 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
75, 6jca 515 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
8 simp21 1203 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
9 simp23 1205 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
108, 9jca 515 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
114, 7, 103jca 1125 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))))
1211adantr 484 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → (𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))))
13 axsegcon 26735 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩))
1412, 13syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩))
15 simprlr 779 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)
16 simprrr 781 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)
17 an4 655 . . . . . . . . . . . . 13 (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) ↔ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)))
18 simpl1 1188 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
19 simpl21 1248 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
20 simpl22 1249 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
21 simpl3l 1225 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
22 simpl3r 1226 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁))
23 cgrcomlr 33608 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ↔ ⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩))
2418, 19, 20, 21, 22, 23syl122anc 1376 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ↔ ⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩))
2524anbi1d 632 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) ↔ (⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)))
2625anbi2d 631 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) ↔ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))))
27 simpl23 1250 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
28 simpr 488 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝑓 ∈ (𝔼‘𝑁))
29 cgrextend 33618 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3018, 20, 19, 27, 22, 21, 28, 29syl133anc 1390 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3126, 30sylbid 243 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3217, 31syl5bi 245 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3332imp 410 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)
3415, 16, 333jca 1125 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3534expr 460 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
36 cgrcom 33600 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
3718, 21, 28, 19, 27, 36syl122anc 1376 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
3837anbi2d 631 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ↔ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)))
3938adantr 484 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ↔ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)))
40 simpl2 1189 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
41 brcgr3 33656 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
4218, 40, 21, 22, 28, 41syl113anc 1379 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
4342adantr 484 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
4435, 39, 433imtr4d 297 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
4544an32s 651 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
4645reximdva 3233 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → (∃𝑓 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
4714, 46mpd 15 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)
4847exp32 424 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
49 3ancoma 1095 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
50 btwncom 33624 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
5149, 50sylan2b 596 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
52513adant3 1129 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
53 simp3 1135 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)))
54 simp22 1204 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
55 axsegcon 26735 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
564, 53, 54, 9, 55syl112anc 1371 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
5756adantr 484 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
58 cgrextend 33618 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
5918, 40, 21, 22, 28, 58syl113anc 1379 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
60 simpll 766 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)
61 simpr 488 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)
62 simplr 768 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)
6360, 61, 623jca 1125 . . . . . . . . . . . . . 14 (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
6463ex 416 . . . . . . . . . . . . 13 ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) → (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
6564adantl 485 . . . . . . . . . . . 12 (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)) → (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
6659, 65sylcom 30 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
67 an4 655 . . . . . . . . . . . 12 (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)))
68 cgrcom 33600 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
6918, 22, 28, 20, 27, 68syl122anc 1376 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
7069anbi2d 631 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
7170anbi2d 631 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))))
7267, 71syl5bb 286 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))))
7366, 72, 423imtr4d 297 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
7473expdimp 456 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ((𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
7574an32s 651 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
7675reximdva 3233 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → (∃𝑓 ∈ (𝔼‘𝑁)(𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
7757, 76mpd 15 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)
7877exp32 424 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
7952, 78sylbird 263 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
80 cgrxfr 33665 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩)))
814, 8, 9, 54, 53, 80syl131anc 1380 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩)))
82 cgr3permute1 33658 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩))
8318, 40, 21, 22, 28, 82syl113anc 1379 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩))
8483biimprd 251 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩ → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
8584adantld 494 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
8685reximdva 3233 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑓 ∈ (𝔼‘𝑁)(𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
8781, 86syld 47 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
8887expd 419 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
8948, 79, 883jaod 1425 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
9089impd 414 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
913, 90sylbid 243 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ w3o 1083   ∧ w3a 1084   ∈ wcel 2111  ∃wrex 3107  ⟨cop 4531   class class class wbr 5031  ‘cfv 6327  ℕcn 11632  𝔼cee 26696   Btwn cbtwn 26697  Cgrccgr 26698  Cgr3ccgr3 33646   Colinear ccolin 33647 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-inf2 9095  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610  ax-pre-sup 10611 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-sup 8897  df-oi 8965  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-div 11294  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-rp 12385  df-ico 12739  df-icc 12740  df-fz 12893  df-fzo 13036  df-seq 13372  df-exp 13433  df-hash 13694  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-ee 26699  df-btwn 26700  df-cgr 26701  df-ofs 33593  df-colinear 33649  df-cgr3 33651 This theorem is referenced by:  brsegle2  33719
 Copyright terms: Public domain W3C validator