Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineext Structured version   Visualization version   GIF version

Theorem lineext 35036
Description: Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.)
Assertion
Ref Expression
lineext ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ ((𝐴 Colinear ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
Distinct variable groups:   𝑓,𝑁   𝐴,𝑓   𝐡,𝑓   𝐢,𝑓   𝐷,𝑓   𝑓,𝐸

Proof of Theorem lineext
StepHypRef Expression
1 brcolinear 35019 . . . 4 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ (𝐴 Colinear ⟨𝐡, 𝐢⟩ ↔ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∨ 𝐡 Btwn ⟨𝐢, 𝐴⟩ ∨ 𝐢 Btwn ⟨𝐴, 𝐡⟩)))
213adant3 1132 . . 3 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝐴 Colinear ⟨𝐡, 𝐢⟩ ↔ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∨ 𝐡 Btwn ⟨𝐢, 𝐴⟩ ∨ 𝐢 Btwn ⟨𝐴, 𝐡⟩)))
32anbi1d 630 . 2 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ ((𝐴 Colinear ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ↔ ((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∨ 𝐡 Btwn ⟨𝐢, 𝐴⟩ ∨ 𝐢 Btwn ⟨𝐴, 𝐡⟩) ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)))
4 simp1 1136 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ 𝑁 ∈ β„•)
5 simp3r 1202 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ 𝐸 ∈ (π”Όβ€˜π‘))
6 simp3l 1201 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ 𝐷 ∈ (π”Όβ€˜π‘))
75, 6jca 512 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)))
8 simp21 1206 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
9 simp23 1208 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
108, 9jca 512 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)))
114, 7, 103jca 1128 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝑁 ∈ β„• ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)) ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))))
1211adantr 481 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ (𝑁 ∈ β„• ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)) ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))))
13 axsegcon 28174 . . . . . . 7 ((𝑁 ∈ β„• ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)) ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐷, π‘“βŸ©Cgr⟨𝐴, 𝐢⟩))
1412, 13syl 17 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐷, π‘“βŸ©Cgr⟨𝐴, 𝐢⟩))
15 simprlr 778 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ ((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©))) β†’ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)
16 simprrr 780 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ ((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©))) β†’ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)
17 an4 654 . . . . . . . . . . . . 13 (((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)) ↔ ((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ 𝐷 Btwn ⟨𝐸, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)))
18 simpl1 1191 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ 𝑁 ∈ β„•)
19 simpl21 1251 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
20 simpl22 1252 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
21 simpl3l 1228 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ 𝐷 ∈ (π”Όβ€˜π‘))
22 simpl3r 1229 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ 𝐸 ∈ (π”Όβ€˜π‘))
23 cgrcomlr 34958 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ↔ ⟨𝐡, 𝐴⟩Cgr⟨𝐸, 𝐷⟩))
2418, 19, 20, 21, 22, 23syl122anc 1379 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ↔ ⟨𝐡, 𝐴⟩Cgr⟨𝐸, 𝐷⟩))
2524anbi1d 630 . . . . . . . . . . . . . . 15 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ ((⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©) ↔ (⟨𝐡, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)))
2625anbi2d 629 . . . . . . . . . . . . . 14 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ 𝐷 Btwn ⟨𝐸, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)) ↔ ((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ 𝐷 Btwn ⟨𝐸, π‘“βŸ©) ∧ (⟨𝐡, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©))))
27 simpl23 1253 . . . . . . . . . . . . . . 15 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
28 simpr 485 . . . . . . . . . . . . . . 15 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ 𝑓 ∈ (π”Όβ€˜π‘))
29 cgrextend 34968 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„• ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝑓 ∈ (π”Όβ€˜π‘))) β†’ (((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ 𝐷 Btwn ⟨𝐸, π‘“βŸ©) ∧ (⟨𝐡, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)) β†’ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))
3018, 20, 19, 27, 22, 21, 28, 29syl133anc 1393 . . . . . . . . . . . . . 14 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ 𝐷 Btwn ⟨𝐸, π‘“βŸ©) ∧ (⟨𝐡, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)) β†’ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))
3126, 30sylbid 239 . . . . . . . . . . . . 13 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ 𝐷 Btwn ⟨𝐸, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)) β†’ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))
3217, 31biimtrid 241 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)) β†’ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))
3332imp 407 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ ((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©))) β†’ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)
3415, 16, 333jca 1128 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ ((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©))) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))
3534expr 457 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ ((𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)))
36 cgrcom 34950 . . . . . . . . . . . 12 ((𝑁 ∈ β„• ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐷, π‘“βŸ©Cgr⟨𝐴, 𝐢⟩ ↔ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©))
3718, 21, 28, 19, 27, 36syl122anc 1379 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (⟨𝐷, π‘“βŸ©Cgr⟨𝐴, 𝐢⟩ ↔ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©))
3837anbi2d 629 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ ((𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐷, π‘“βŸ©Cgr⟨𝐴, 𝐢⟩) ↔ (𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)))
3938adantr 481 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ ((𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐷, π‘“βŸ©Cgr⟨𝐴, 𝐢⟩) ↔ (𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)))
40 simpl2 1192 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)))
41 brcgr3 35006 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑓 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ© ↔ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)))
4218, 40, 21, 22, 28, 41syl113anc 1382 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ© ↔ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)))
4342adantr 481 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ (⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ© ↔ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)))
4435, 39, 433imtr4d 293 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ ((𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐷, π‘“βŸ©Cgr⟨𝐴, 𝐢⟩) β†’ ⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
4544an32s 650 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ ((𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐷, π‘“βŸ©Cgr⟨𝐴, 𝐢⟩) β†’ ⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
4645reximdva 3168 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ (βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝐷 Btwn ⟨𝐸, π‘“βŸ© ∧ ⟨𝐷, π‘“βŸ©Cgr⟨𝐴, 𝐢⟩) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
4714, 46mpd 15 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ (𝐴 Btwn ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©)
4847exp32 421 . . . 4 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝐴 Btwn ⟨𝐡, 𝐢⟩ β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©)))
49 3ancoma 1098 . . . . . . 7 ((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ↔ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)))
50 btwncom 34974 . . . . . . 7 ((𝑁 ∈ β„• ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ↔ 𝐡 Btwn ⟨𝐢, 𝐴⟩))
5149, 50sylan2b 594 . . . . . 6 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ↔ 𝐡 Btwn ⟨𝐢, 𝐴⟩))
52513adant3 1132 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ↔ 𝐡 Btwn ⟨𝐢, 𝐴⟩))
53 simp3 1138 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘)))
54 simp22 1207 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
55 axsegcon 28174 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝐸 Btwn ⟨𝐷, π‘“βŸ© ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩))
564, 53, 54, 9, 55syl112anc 1374 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝐸 Btwn ⟨𝐷, π‘“βŸ© ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩))
5756adantr 481 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝐸 Btwn ⟨𝐷, π‘“βŸ© ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩))
58 cgrextend 34968 . . . . . . . . . . . . 13 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑓 ∈ (π”Όβ€˜π‘))) β†’ (((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)) β†’ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©))
5918, 40, 21, 22, 28, 58syl113anc 1382 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)) β†’ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©))
60 simpll 765 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©) ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©) β†’ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)
61 simpr 485 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©) ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©) β†’ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©)
62 simplr 767 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©) ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©) β†’ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)
6360, 61, 623jca 1128 . . . . . . . . . . . . . 14 (((⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©) ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ©) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))
6463ex 413 . . . . . . . . . . . . 13 ((⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©) β†’ (⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)))
6564adantl 482 . . . . . . . . . . . 12 (((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)) β†’ (⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)))
6659, 65sylcom 30 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐢⟩Cgr⟨𝐷, π‘“βŸ© ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)))
67 an4 654 . . . . . . . . . . . 12 (((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐸 Btwn ⟨𝐷, π‘“βŸ© ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩)) ↔ ((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩)))
68 cgrcom 34950 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„• ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩ ↔ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))
6918, 22, 28, 20, 27, 68syl122anc 1379 . . . . . . . . . . . . . 14 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩ ↔ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))
7069anbi2d 629 . . . . . . . . . . . . 13 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ ((⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩) ↔ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©)))
7170anbi2d 629 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩)) ↔ ((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))))
7267, 71bitrid 282 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐸 Btwn ⟨𝐷, π‘“βŸ© ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩)) ↔ ((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐸 Btwn ⟨𝐷, π‘“βŸ©) ∧ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐡, 𝐢⟩Cgr⟨𝐸, π‘“βŸ©))))
7366, 72, 423imtr4d 293 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (((𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐸 Btwn ⟨𝐷, π‘“βŸ© ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩)) β†’ ⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
7473expdimp 453 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ ((𝐸 Btwn ⟨𝐷, π‘“βŸ© ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩) β†’ ⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
7574an32s 650 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ ((𝐸 Btwn ⟨𝐷, π‘“βŸ© ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩) β†’ ⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
7675reximdva 3168 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ (βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝐸 Btwn ⟨𝐷, π‘“βŸ© ∧ ⟨𝐸, π‘“βŸ©Cgr⟨𝐡, 𝐢⟩) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
7757, 76mpd 15 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ (𝐡 Btwn ⟨𝐴, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩)) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©)
7877exp32 421 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝐡 Btwn ⟨𝐴, 𝐢⟩ β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©)))
7952, 78sylbird 259 . . . 4 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝐡 Btwn ⟨𝐢, 𝐴⟩ β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©)))
80 cgrxfr 35015 . . . . . . 7 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ ((𝐢 Btwn ⟨𝐴, 𝐡⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐢, 𝐡⟩⟩Cgr3⟨𝐷, βŸ¨π‘“, 𝐸⟩⟩)))
814, 8, 9, 54, 53, 80syl131anc 1383 . . . . . 6 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ ((𝐢 Btwn ⟨𝐴, 𝐡⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐢, 𝐡⟩⟩Cgr3⟨𝐷, βŸ¨π‘“, 𝐸⟩⟩)))
82 cgr3permute1 35008 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑓 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ© ↔ ⟨𝐴, ⟨𝐢, 𝐡⟩⟩Cgr3⟨𝐷, βŸ¨π‘“, 𝐸⟩⟩))
8318, 40, 21, 22, 28, 82syl113anc 1382 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ© ↔ ⟨𝐴, ⟨𝐢, 𝐡⟩⟩Cgr3⟨𝐷, βŸ¨π‘“, 𝐸⟩⟩))
8483biimprd 247 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ (⟨𝐴, ⟨𝐢, 𝐡⟩⟩Cgr3⟨𝐷, βŸ¨π‘“, 𝐸⟩⟩ β†’ ⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
8584adantld 491 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) ∧ 𝑓 ∈ (π”Όβ€˜π‘)) β†’ ((𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐢, 𝐡⟩⟩Cgr3⟨𝐷, βŸ¨π‘“, 𝐸⟩⟩) β†’ ⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
8685reximdva 3168 . . . . . 6 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (βˆƒπ‘“ ∈ (π”Όβ€˜π‘)(𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐢, 𝐡⟩⟩Cgr3⟨𝐷, βŸ¨π‘“, 𝐸⟩⟩) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
8781, 86syld 47 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ ((𝐢 Btwn ⟨𝐴, 𝐡⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
8887expd 416 . . . 4 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (𝐢 Btwn ⟨𝐴, 𝐡⟩ β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©)))
8948, 79, 883jaod 1428 . . 3 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ ((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∨ 𝐡 Btwn ⟨𝐢, 𝐴⟩ ∨ 𝐢 Btwn ⟨𝐴, 𝐡⟩) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩ β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©)))
9089impd 411 . 2 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ (((𝐴 Btwn ⟨𝐡, 𝐢⟩ ∨ 𝐡 Btwn ⟨𝐢, 𝐴⟩ ∨ 𝐢 Btwn ⟨𝐴, 𝐡⟩) ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
913, 90sylbid 239 1 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘))) β†’ ((𝐴 Colinear ⟨𝐡, 𝐢⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐷, 𝐸⟩) β†’ βˆƒπ‘“ ∈ (π”Όβ€˜π‘)⟨𝐴, ⟨𝐡, 𝐢⟩⟩Cgr3⟨𝐷, ⟨𝐸, π‘“βŸ©βŸ©))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ w3o 1086   ∧ w3a 1087   ∈ wcel 2106  βˆƒwrex 3070  βŸ¨cop 4633   class class class wbr 5147  β€˜cfv 6540  β„•cn 12208  π”Όcee 28135   Btwn cbtwn 28136  Cgrccgr 28137  Cgr3ccgr3 34996   Colinear ccolin 34997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-ee 28138  df-btwn 28139  df-cgr 28140  df-ofs 34943  df-colinear 34999  df-cgr3 35001
This theorem is referenced by:  brsegle2  35069
  Copyright terms: Public domain W3C validator