Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineext Structured version   Visualization version   GIF version

Theorem lineext 35900
Description: Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.)
Assertion
Ref Expression
lineext ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
Distinct variable groups:   𝑓,𝑁   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸

Proof of Theorem lineext
StepHypRef Expression
1 brcolinear 35883 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
213adant3 1129 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
32anbi1d 629 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ↔ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)))
4 simp1 1133 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
5 simp3r 1199 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
6 simp3l 1198 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
75, 6jca 510 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
8 simp21 1203 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
9 simp23 1205 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
108, 9jca 510 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
114, 7, 103jca 1125 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))))
1211adantr 479 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → (𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))))
13 axsegcon 28861 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩))
1412, 13syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩))
15 simprlr 778 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)
16 simprrr 780 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)
17 an4 654 . . . . . . . . . . . . 13 (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) ↔ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)))
18 simpl1 1188 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
19 simpl21 1248 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
20 simpl22 1249 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
21 simpl3l 1225 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
22 simpl3r 1226 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁))
23 cgrcomlr 35822 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ↔ ⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩))
2418, 19, 20, 21, 22, 23syl122anc 1376 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ↔ ⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩))
2524anbi1d 629 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) ↔ (⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)))
2625anbi2d 628 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) ↔ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))))
27 simpl23 1250 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
28 simpr 483 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → 𝑓 ∈ (𝔼‘𝑁))
29 cgrextend 35832 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3018, 20, 19, 27, 22, 21, 28, 29syl133anc 1390 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐵, 𝐴⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3126, 30sylbid 239 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐷 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3217, 31biimtrid 241 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3332imp 405 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)
3415, 16, 333jca 1125 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
3534expr 455 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
36 cgrcom 35814 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
3718, 21, 28, 19, 27, 36syl122anc 1376 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
3837anbi2d 628 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ↔ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)))
3938adantr 479 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ↔ (𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)))
40 simpl2 1189 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
41 brcgr3 35870 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
4218, 40, 21, 22, 28, 41syl113anc 1379 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
4342adantr 479 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
4435, 39, 433imtr4d 293 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
4544an32s 650 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
4645reximdva 3158 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → (∃𝑓 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
4714, 46mpd 15 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)
4847exp32 419 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
49 3ancoma 1095 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
50 btwncom 35838 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
5149, 50sylan2b 592 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
52513adant3 1129 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
53 simp3 1135 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)))
54 simp22 1204 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
55 axsegcon 28861 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
564, 53, 54, 9, 55syl112anc 1371 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
5756adantr 479 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
58 cgrextend 35832 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
5918, 40, 21, 22, 28, 58syl113anc 1379 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
60 simpll 765 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)
61 simpr 483 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩)
62 simplr 767 . . . . . . . . . . . . . . 15 (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)
6360, 61, 623jca 1125 . . . . . . . . . . . . . 14 (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
6463ex 411 . . . . . . . . . . . . 13 ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) → (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
6564adantl 480 . . . . . . . . . . . 12 (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)) → (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
6659, 65sylcom 30 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
67 an4 654 . . . . . . . . . . . 12 (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)))
68 cgrcom 35814 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
6918, 22, 28, 20, 27, 68syl122anc 1376 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
7069anbi2d 628 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
7170anbi2d 628 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))))
7267, 71bitrid 282 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑓⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))))
7366, 72, 423imtr4d 293 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) ∧ (𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
7473expdimp 451 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ((𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
7574an32s 650 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
7675reximdva 3158 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → (∃𝑓 ∈ (𝔼‘𝑁)(𝐸 Btwn ⟨𝐷, 𝑓⟩ ∧ ⟨𝐸, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
7757, 76mpd 15 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)
7877exp32 419 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
7952, 78sylbird 259 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
80 cgrxfr 35879 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩)))
814, 8, 9, 54, 53, 80syl131anc 1380 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩)))
82 cgr3permute1 35872 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩))
8318, 40, 21, 22, 28, 82syl113anc 1379 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩ ↔ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩))
8483biimprd 247 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩ → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
8584adantld 489 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
8685reximdva 3158 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑓 ∈ (𝔼‘𝑁)(𝑓 Btwn ⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝑓, 𝐸⟩⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
8781, 86syld 47 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
8887expd 414 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
8948, 79, 883jaod 1426 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩)))
9089impd 409 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
913, 90sylbid 239 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩) → ∃𝑓 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝑓⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3o 1083  w3a 1084  wcel 2099  wrex 3060  cop 4639   class class class wbr 5153  cfv 6554  cn 12264  𝔼cee 28822   Btwn cbtwn 28823  Cgrccgr 28824  Cgr3ccgr3 35860   Colinear ccolin 35861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-sum 15691  df-ee 28825  df-btwn 28826  df-cgr 28827  df-ofs 35807  df-colinear 35863  df-cgr3 35865
This theorem is referenced by:  brsegle2  35933
  Copyright terms: Public domain W3C validator