Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcinvALTV Structured version   Visualization version   GIF version

Theorem ringcinvALTV 46907
Description: An inverse in the category of rings is the converse operation. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringcsectALTV.c 𝐢 = (RingCatALTVβ€˜π‘ˆ)
ringcsectALTV.b 𝐡 = (Baseβ€˜πΆ)
ringcsectALTV.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
ringcsectALTV.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
ringcsectALTV.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
ringcinvALTV.n 𝑁 = (Invβ€˜πΆ)
Assertion
Ref Expression
ringcinvALTV (πœ‘ β†’ (𝐹(π‘‹π‘π‘Œ)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)))

Proof of Theorem ringcinvALTV
StepHypRef Expression
1 ringcsectALTV.b . . 3 𝐡 = (Baseβ€˜πΆ)
2 ringcinvALTV.n . . 3 𝑁 = (Invβ€˜πΆ)
3 ringcsectALTV.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
4 ringcsectALTV.c . . . . 5 𝐢 = (RingCatALTVβ€˜π‘ˆ)
54ringccatALTV 46904 . . . 4 (π‘ˆ ∈ 𝑉 β†’ 𝐢 ∈ Cat)
63, 5syl 17 . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
7 ringcsectALTV.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
8 ringcsectALTV.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
9 eqid 2732 . . 3 (Sectβ€˜πΆ) = (Sectβ€˜πΆ)
101, 2, 6, 7, 8, 9isinv 17703 . 2 (πœ‘ β†’ (𝐹(π‘‹π‘π‘Œ)𝐺 ↔ (𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ∧ 𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹)))
11 eqid 2732 . . . . . 6 (Baseβ€˜π‘‹) = (Baseβ€˜π‘‹)
124, 1, 3, 7, 8, 11, 9ringcsectALTV 46906 . . . . 5 (πœ‘ β†’ (𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))))
13 df-3an 1089 . . . . 5 ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))))
1412, 13bitrdi 286 . . . 4 (πœ‘ β†’ (𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))))
15 eqid 2732 . . . . . 6 (Baseβ€˜π‘Œ) = (Baseβ€˜π‘Œ)
164, 1, 3, 8, 7, 15, 9ringcsectALTV 46906 . . . . 5 (πœ‘ β†’ (𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹 ↔ (𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))))
17 3ancoma 1098 . . . . . 6 ((𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))) ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))
18 df-3an 1089 . . . . . 6 ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))) ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))
1917, 18bitri 274 . . . . 5 ((𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))) ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))
2016, 19bitrdi 286 . . . 4 (πœ‘ β†’ (𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))))
2114, 20anbi12d 631 . . 3 (πœ‘ β†’ ((𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ∧ 𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))))
22 anandi 674 . . 3 ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) ↔ ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))))
2321, 22bitrdi 286 . 2 (πœ‘ β†’ ((𝐹(𝑋(Sectβ€˜πΆ)π‘Œ)𝐺 ∧ 𝐺(π‘Œ(Sectβ€˜πΆ)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))))
24 simplrl 775 . . . . . 6 (((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ 𝐹 ∈ (𝑋 RingHom π‘Œ))
2524adantl 482 . . . . 5 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ 𝐹 ∈ (𝑋 RingHom π‘Œ))
2611, 15rhmf 20255 . . . . . . . . . 10 (𝐹 ∈ (𝑋 RingHom π‘Œ) β†’ 𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ))
2715, 11rhmf 20255 . . . . . . . . . 10 (𝐺 ∈ (π‘Œ RingHom 𝑋) β†’ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹))
2826, 27anim12i 613 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) β†’ (𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)))
2928ad2antlr 725 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ (𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)))
30 simpr 485 . . . . . . . . 9 ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))) β†’ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))
3130adantl 482 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))
32 simpr 485 . . . . . . . . 9 (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) β†’ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
3332ad2antrl 726 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
3429, 31, 33jca32 516 . . . . . . 7 (((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) β†’ ((𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)) ∧ ((𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))))
3534adantl 482 . . . . . 6 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ ((𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)) ∧ ((𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))))
36 fcof1o 7290 . . . . . . 7 (((𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)) ∧ ((𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))) β†’ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ ◑𝐹 = 𝐺))
37 eqcom 2739 . . . . . . . 8 (◑𝐹 = 𝐺 ↔ 𝐺 = ◑𝐹)
3837anbi2i 623 . . . . . . 7 ((𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ ◑𝐹 = 𝐺) ↔ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ 𝐺 = ◑𝐹))
3936, 38sylib 217 . . . . . 6 (((𝐹:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ∧ 𝐺:(Baseβ€˜π‘Œ)⟢(Baseβ€˜π‘‹)) ∧ ((𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))) β†’ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ 𝐺 = ◑𝐹))
4035, 39syl 17 . . . . 5 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ 𝐺 = ◑𝐹))
41 anass 469 . . . . 5 (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ)) ∧ 𝐺 = ◑𝐹) ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) ∧ 𝐺 = ◑𝐹)))
4225, 40, 41sylanbrc 583 . . . 4 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ)) ∧ 𝐺 = ◑𝐹))
4311, 15isrim 20262 . . . . . . 7 (𝐹 ∈ (𝑋 RingIso π‘Œ) ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ)))
4443a1i 11 . . . . . 6 (πœ‘ β†’ (𝐹 ∈ (𝑋 RingIso π‘Œ) ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ))))
4544anbi1d 630 . . . . 5 (πœ‘ β†’ ((𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ)) ∧ 𝐺 = ◑𝐹)))
4645adantr 481 . . . 4 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ ((𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ)) ∧ 𝐺 = ◑𝐹)))
4742, 46mpbird 256 . . 3 ((πœ‘ ∧ ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))) β†’ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹))
48 rimrhm 20266 . . . . . 6 (𝐹 ∈ (𝑋 RingIso π‘Œ) β†’ 𝐹 ∈ (𝑋 RingHom π‘Œ))
4948ad2antrl 726 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ 𝐹 ∈ (𝑋 RingHom π‘Œ))
50 isrim0 20253 . . . . . . . . 9 (𝐹 ∈ (𝑋 RingIso π‘Œ) ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RingHom 𝑋)))
5150simprbi 497 . . . . . . . 8 (𝐹 ∈ (𝑋 RingIso π‘Œ) β†’ ◑𝐹 ∈ (π‘Œ RingHom 𝑋))
52 eleq1 2821 . . . . . . . 8 (𝐺 = ◑𝐹 β†’ (𝐺 ∈ (π‘Œ RingHom 𝑋) ↔ ◑𝐹 ∈ (π‘Œ RingHom 𝑋)))
5351, 52syl5ibrcom 246 . . . . . . 7 (𝐹 ∈ (𝑋 RingIso π‘Œ) β†’ (𝐺 = ◑𝐹 β†’ 𝐺 ∈ (π‘Œ RingHom 𝑋)))
5453imp 407 . . . . . 6 ((𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹) β†’ 𝐺 ∈ (π‘Œ RingHom 𝑋))
5554adantl 482 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ 𝐺 ∈ (π‘Œ RingHom 𝑋))
56 coeq1 5855 . . . . . . 7 (𝐺 = ◑𝐹 β†’ (𝐺 ∘ 𝐹) = (◑𝐹 ∘ 𝐹))
5756ad2antll 727 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐺 ∘ 𝐹) = (◑𝐹 ∘ 𝐹))
5811, 15rimf1o 20264 . . . . . . . 8 (𝐹 ∈ (𝑋 RingIso π‘Œ) β†’ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ))
5958ad2antrl 726 . . . . . . 7 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ 𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ))
60 f1ococnv1 6859 . . . . . . 7 (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) β†’ (◑𝐹 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
6159, 60syl 17 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (◑𝐹 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
6257, 61eqtrd 2772 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹)))
6349, 55, 62jca31 515 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))))
6450biimpi 215 . . . . . 6 (𝐹 ∈ (𝑋 RingIso π‘Œ) β†’ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RingHom 𝑋)))
6564ad2antrl 726 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RingHom 𝑋)))
6652ad2antll 727 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐺 ∈ (π‘Œ RingHom 𝑋) ↔ ◑𝐹 ∈ (π‘Œ RingHom 𝑋)))
6766anbi2d 629 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ ◑𝐹 ∈ (π‘Œ RingHom 𝑋))))
6865, 67mpbird 256 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)))
69 coeq2 5856 . . . . . . 7 (𝐺 = ◑𝐹 β†’ (𝐹 ∘ 𝐺) = (𝐹 ∘ ◑𝐹))
7069ad2antll 727 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∘ 𝐺) = (𝐹 ∘ ◑𝐹))
71 f1ococnv2 6857 . . . . . . 7 (𝐹:(Baseβ€˜π‘‹)–1-1-ontoβ†’(Baseβ€˜π‘Œ) β†’ (𝐹 ∘ ◑𝐹) = ( I β†Ύ (Baseβ€˜π‘Œ)))
7259, 71syl 17 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∘ ◑𝐹) = ( I β†Ύ (Baseβ€˜π‘Œ)))
7370, 72eqtrd 2772 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))
7468, 62, 73jca31 515 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ))))
7563, 68, 74jca31 515 . . 3 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)) β†’ ((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))))
7647, 75impbida 799 . 2 (πœ‘ β†’ (((((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ (Baseβ€˜π‘‹))) ∧ (𝐹 ∘ 𝐺) = ( I β†Ύ (Baseβ€˜π‘Œ)))) ↔ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)))
7710, 23, 763bitrd 304 1 (πœ‘ β†’ (𝐹(π‘‹π‘π‘Œ)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso π‘Œ) ∧ 𝐺 = ◑𝐹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5147   I cid 5572  β—‘ccnv 5674   β†Ύ cres 5677   ∘ ccom 5679  βŸΆwf 6536  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Catccat 17604  Sectcsect 17687  Invcinv 17688   RingHom crh 20240   RingIso crs 20241  RingCatALTVcringcALTV 46855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-hom 17217  df-cco 17218  df-0g 17383  df-cat 17608  df-cid 17609  df-sect 17690  df-inv 17691  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-ghm 19084  df-mgp 19982  df-ur 19999  df-ring 20051  df-rnghom 20243  df-rngiso 20244  df-ringcALTV 46857
This theorem is referenced by:  ringcisoALTV  46908
  Copyright terms: Public domain W3C validator