Proof of Theorem ringcinvALTV
Step | Hyp | Ref
| Expression |
1 | | ringcsectALTV.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
2 | | ringcinvALTV.n |
. . 3
⊢ 𝑁 = (Inv‘𝐶) |
3 | | ringcsectALTV.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
4 | | ringcsectALTV.c |
. . . . 5
⊢ 𝐶 = (RingCatALTV‘𝑈) |
5 | 4 | ringccatALTV 46341 |
. . . 4
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | | ringcsectALTV.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
8 | | ringcsectALTV.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
9 | | eqid 2736 |
. . 3
⊢
(Sect‘𝐶) =
(Sect‘𝐶) |
10 | 1, 2, 6, 7, 8, 9 | isinv 17643 |
. 2
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) |
11 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
12 | 4, 1, 3, 7, 8, 11,
9 | ringcsectALTV 46343 |
. . . . 5
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
13 | | df-3an 1089 |
. . . . 5
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) |
14 | 12, 13 | bitrdi 286 |
. . . 4
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
15 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑌) |
16 | 4, 1, 3, 8, 7, 15,
9 | ringcsectALTV 46343 |
. . . . 5
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
17 | | 3ancoma 1098 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
18 | | df-3an 1089 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
19 | 17, 18 | bitri 274 |
. . . . 5
⊢ ((𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
20 | 16, 19 | bitrdi 286 |
. . . 4
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
21 | 14, 20 | anbi12d 631 |
. . 3
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))))) |
22 | | anandi 674 |
. . 3
⊢ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) ↔ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
23 | 21, 22 | bitrdi 286 |
. 2
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))))) |
24 | | simplrl 775 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
25 | 24 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
26 | 11, 15 | rhmf 20158 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑋 RingHom 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) |
27 | 15, 11 | rhmf 20158 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝑌 RingHom 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) |
28 | 26, 27 | anim12i 613 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋))) |
29 | 28 | ad2antlr 725 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋))) |
30 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) |
31 | 30 | adantl 482 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) |
32 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
33 | 32 | ad2antrl 726 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
34 | 29, 31, 33 | jca32 516 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
35 | 34 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
36 | | fcof1o 7242 |
. . . . . . 7
⊢ (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ ◡𝐹 = 𝐺)) |
37 | | eqcom 2743 |
. . . . . . . 8
⊢ (◡𝐹 = 𝐺 ↔ 𝐺 = ◡𝐹) |
38 | 37 | anbi2i 623 |
. . . . . . 7
⊢ ((𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ ◡𝐹 = 𝐺) ↔ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) |
39 | 36, 38 | sylib 217 |
. . . . . 6
⊢ (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) |
40 | 35, 39 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) |
41 | | anass 469 |
. . . . 5
⊢ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹))) |
42 | 25, 40, 41 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹)) |
43 | 11, 15 | isrim 20165 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))) |
44 | 43 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)))) |
45 | 44 | anbi1d 630 |
. . . . 5
⊢ (𝜑 → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹))) |
46 | 45 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹))) |
47 | 42, 46 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) |
48 | | rimrhm 20169 |
. . . . . 6
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
49 | 48 | ad2antrl 726 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
50 | | isrim0 20156 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) |
51 | 50 | simprbi 497 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → ◡𝐹 ∈ (𝑌 RingHom 𝑋)) |
52 | | eleq1 2825 |
. . . . . . . 8
⊢ (𝐺 = ◡𝐹 → (𝐺 ∈ (𝑌 RingHom 𝑋) ↔ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) |
53 | 51, 52 | syl5ibrcom 246 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → (𝐺 = ◡𝐹 → 𝐺 ∈ (𝑌 RingHom 𝑋))) |
54 | 53 | imp 407 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) → 𝐺 ∈ (𝑌 RingHom 𝑋)) |
55 | 54 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐺 ∈ (𝑌 RingHom 𝑋)) |
56 | | coeq1 5813 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) |
57 | 56 | ad2antll 727 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) |
58 | 11, 15 | rimf1o 20167 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) |
59 | 58 | ad2antrl 726 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) |
60 | | f1ococnv1 6813 |
. . . . . . 7
⊢ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
61 | 59, 60 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
62 | 57, 61 | eqtrd 2776 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
63 | 49, 55, 62 | jca31 515 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) |
64 | 50 | biimpi 215 |
. . . . . 6
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) |
65 | 64 | ad2antrl 726 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) |
66 | 52 | ad2antll 727 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∈ (𝑌 RingHom 𝑋) ↔ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) |
67 | 66 | anbi2d 629 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋)))) |
68 | 65, 67 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) |
69 | | coeq2 5814 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) |
70 | 69 | ad2antll 727 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) |
71 | | f1ococnv2 6811 |
. . . . . . 7
⊢ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝑌))) |
72 | 59, 71 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝑌))) |
73 | 70, 72 | eqtrd 2776 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) |
74 | 68, 62, 73 | jca31 515 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
75 | 63, 68, 74 | jca31 515 |
. . 3
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
76 | 47, 75 | impbida 799 |
. 2
⊢ (𝜑 → (((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) |
77 | 10, 23, 76 | 3bitrd 304 |
1
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) |