Proof of Theorem ringcinvALTV
Step | Hyp | Ref
| Expression |
1 | | ringcsectALTV.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
2 | | ringcinvALTV.n |
. . 3
⊢ 𝑁 = (Inv‘𝐶) |
3 | | ringcsectALTV.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
4 | | ringcsectALTV.c |
. . . . 5
⊢ 𝐶 = (RingCatALTV‘𝑈) |
5 | 4 | ringccatALTV 45611 |
. . . 4
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | | ringcsectALTV.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
8 | | ringcsectALTV.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
9 | | eqid 2738 |
. . 3
⊢
(Sect‘𝐶) =
(Sect‘𝐶) |
10 | 1, 2, 6, 7, 8, 9 | isinv 17472 |
. 2
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) |
11 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
12 | 4, 1, 3, 7, 8, 11,
9 | ringcsectALTV 45613 |
. . . . 5
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
13 | | df-3an 1088 |
. . . . 5
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) |
14 | 12, 13 | bitrdi 287 |
. . . 4
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
15 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑌) |
16 | 4, 1, 3, 8, 7, 15,
9 | ringcsectALTV 45613 |
. . . . 5
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
17 | | 3ancoma 1097 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
18 | | df-3an 1088 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
19 | 17, 18 | bitri 274 |
. . . . 5
⊢ ((𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
20 | 16, 19 | bitrdi 287 |
. . . 4
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
21 | 14, 20 | anbi12d 631 |
. . 3
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))))) |
22 | | anandi 673 |
. . 3
⊢ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) ↔ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
23 | 21, 22 | bitrdi 287 |
. 2
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))))) |
24 | | simplrl 774 |
. . . . . 6
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
25 | 24 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
26 | 11, 15 | rhmf 19970 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑋 RingHom 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) |
27 | 15, 11 | rhmf 19970 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝑌 RingHom 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) |
28 | 26, 27 | anim12i 613 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋))) |
29 | 28 | ad2antlr 724 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋))) |
30 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) |
31 | 30 | adantl 482 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) |
32 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
33 | 32 | ad2antrl 725 |
. . . . . . . . 9
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
34 | 31, 33 | jca 512 |
. . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) |
35 | 29, 34 | jca 512 |
. . . . . . 7
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
36 | 35 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) |
37 | | fcof1o 7168 |
. . . . . . 7
⊢ (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ ◡𝐹 = 𝐺)) |
38 | | eqcom 2745 |
. . . . . . . 8
⊢ (◡𝐹 = 𝐺 ↔ 𝐺 = ◡𝐹) |
39 | 38 | anbi2i 623 |
. . . . . . 7
⊢ ((𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ ◡𝐹 = 𝐺) ↔ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) |
40 | 37, 39 | sylib 217 |
. . . . . 6
⊢ (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) |
41 | 36, 40 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) |
42 | | anass 469 |
. . . . 5
⊢ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹))) |
43 | 25, 41, 42 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹)) |
44 | 7, 8 | jca 512 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
45 | 11, 15 | isrim 19977 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)))) |
46 | 44, 45 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)))) |
47 | 46 | anbi1d 630 |
. . . . 5
⊢ (𝜑 → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹))) |
48 | 47 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹))) |
49 | 43, 48 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) |
50 | 11, 15 | rimrhm 19979 |
. . . . . 6
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
51 | 50 | ad2antrl 725 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
52 | | isrim0 19967 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋)))) |
53 | 44, 52 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋)))) |
54 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (◡𝐹 = 𝐺 → (◡𝐹 ∈ (𝑌 RingHom 𝑋) ↔ 𝐺 ∈ (𝑌 RingHom 𝑋))) |
55 | 54 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ (𝐺 = ◡𝐹 → (◡𝐹 ∈ (𝑌 RingHom 𝑋) ↔ 𝐺 ∈ (𝑌 RingHom 𝑋))) |
56 | 55 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝐺 = ◡𝐹 → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)))) |
57 | 53, 56 | sylan9bbr 511 |
. . . . . . . . 9
⊢ ((𝐺 = ◡𝐹 ∧ 𝜑) → (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)))) |
58 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) → 𝐺 ∈ (𝑌 RingHom 𝑋)) |
59 | 57, 58 | syl6bi 252 |
. . . . . . . 8
⊢ ((𝐺 = ◡𝐹 ∧ 𝜑) → (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐺 ∈ (𝑌 RingHom 𝑋))) |
60 | 59 | com12 32 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → ((𝐺 = ◡𝐹 ∧ 𝜑) → 𝐺 ∈ (𝑌 RingHom 𝑋))) |
61 | 60 | expdimp 453 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) → (𝜑 → 𝐺 ∈ (𝑌 RingHom 𝑋))) |
62 | 61 | impcom 408 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐺 ∈ (𝑌 RingHom 𝑋)) |
63 | | coeq1 5766 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) |
64 | 63 | ad2antll 726 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) |
65 | 11, 15 | rimf1o 19978 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) |
66 | 65 | ad2antrl 725 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) |
67 | | f1ococnv1 6745 |
. . . . . . 7
⊢ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
68 | 66, 67 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
69 | 64, 68 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) |
70 | 51, 62, 69 | jca31 515 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) |
71 | 53 | biimpcd 248 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → (𝜑 → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋)))) |
72 | 71 | adantr 481 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) → (𝜑 → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋)))) |
73 | 72 | impcom 408 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) |
74 | | eleq1 2826 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐺 ∈ (𝑌 RingHom 𝑋) ↔ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) |
75 | 74 | ad2antll 726 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∈ (𝑌 RingHom 𝑋) ↔ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) |
76 | 75 | anbi2d 629 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋)))) |
77 | 73, 76 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) |
78 | | coeq2 5767 |
. . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) |
79 | 78 | ad2antll 726 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) |
80 | | f1ococnv2 6743 |
. . . . . . 7
⊢ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝑌))) |
81 | 66, 80 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝑌))) |
82 | 79, 81 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) |
83 | 77, 69, 82 | jca31 515 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) |
84 | 70, 77, 83 | jca31 515 |
. . 3
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) |
85 | 49, 84 | impbida 798 |
. 2
⊢ (𝜑 → (((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) |
86 | 10, 23, 85 | 3bitrd 305 |
1
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) |