![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzo2 | Structured version Visualization version GIF version |
Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
elfzo2 | ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 655 | . . 3 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) | |
2 | df-3an 1090 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) | |
3 | 2 | anbi1i 625 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
4 | eluz2 12828 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) | |
5 | 3ancoma 1099 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) | |
6 | df-3an 1090 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾)) | |
7 | 4, 5, 6 | 3bitri 297 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾)) |
8 | 7 | anbi1i 625 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
9 | 1, 3, 8 | 3bitr4i 303 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
10 | elfzoelz 13632 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ) | |
11 | elfzoel1 13630 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
12 | elfzoel2 13631 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
13 | 10, 11, 12 | 3jca 1129 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
14 | elfzo 13634 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
15 | 13, 14 | biadanii 821 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
16 | 3anass 1096 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) | |
17 | 9, 15, 16 | 3bitr4i 303 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 < clt 11248 ≤ cle 11249 ℤcz 12558 ℤ≥cuz 12822 ..^cfzo 13627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 |
This theorem is referenced by: elfzouz 13636 fzolb 13638 elfzo3 13649 fzouzsplit 13667 prinfzo0 13671 elfzo0 13673 elfzo1 13682 fzo1fzo0n0 13683 eluzgtdifelfzo 13694 ssfzo12bi 13727 elfzonelfzo 13734 elfzomelpfzo 13736 modaddmodup 13899 ccatrn 14539 cshwidxmod 14753 cats1fv 14810 bitsfzolem 16375 bitsfzo 16376 bitsmod 16377 bitsfi 16378 bitsinv1lem 16382 bitsinv1 16383 modprm0 16738 prmgaplem5 16988 prmgaplem6 16989 prmgaplem7 16990 lt6abl 19763 iundisj2 25066 dchrisum0flblem2 27012 crctcshwlkn0lem5 29068 iundisj2f 31821 iundisj2fi 32008 frlmvscadiccat 41080 ssinc 43776 ssdec 43777 elfzfzo 43986 monoords 44007 elfzod 44110 iblspltprt 44689 itgspltprt 44695 fourierdlem20 44843 fourierdlem25 44848 fourierdlem41 44864 fourierdlem48 44870 fourierdlem49 44871 fourierdlem50 44872 fourierdlem79 44901 subsubelfzo0 46034 fzoopth 46035 iccpartiltu 46090 iccpartigtl 46091 iccpartgt 46095 wtgoldbnnsum4prm 46470 bgoldbnnsum3prm 46472 bgoldbtbndlem3 46475 bgoldbtbndlem4 46476 elfzolborelfzop1 47200 m1modmmod 47207 fllog2 47254 nnolog2flm1 47276 |
Copyright terms: Public domain | W3C validator |