MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzo2 Structured version   Visualization version   GIF version

Theorem elfzo2 13436
Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo2 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))

Proof of Theorem elfzo2
StepHypRef Expression
1 an4 654 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
2 df-3an 1089 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ))
32anbi1i 625 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)))
4 eluz2 12634 . . . . 5 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
5 3ancoma 1098 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀𝐾))
6 df-3an 1089 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀𝐾) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾))
74, 5, 63bitri 297 . . . 4 (𝐾 ∈ (ℤ𝑀) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾))
87anbi1i 625 . . 3 ((𝐾 ∈ (ℤ𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
91, 3, 83bitr4i 303 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (𝐾 ∈ (ℤ𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
10 elfzoelz 13433 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ)
11 elfzoel1 13431 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
12 elfzoel2 13432 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
1310, 11, 123jca 1128 . . 3 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 elfzo 13435 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
1513, 14biadanii 820 . 2 (𝐾 ∈ (𝑀..^𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)))
16 3anass 1095 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
179, 15, 163bitr4i 303 1 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1087  wcel 2104   class class class wbr 5081  cfv 6458  (class class class)co 7307   < clt 11055  cle 11056  cz 12365  cuz 12628  ..^cfzo 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-fzo 13429
This theorem is referenced by:  elfzouz  13437  fzolb  13439  elfzo3  13450  fzouzsplit  13468  prinfzo0  13472  elfzo0  13474  elfzo1  13483  fzo1fzo0n0  13484  eluzgtdifelfzo  13495  ssfzo12bi  13528  elfzonelfzo  13535  elfzomelpfzo  13537  modaddmodup  13700  ccatrn  14339  cshwidxmod  14561  cats1fv  14617  bitsfzolem  16186  bitsfzo  16187  bitsmod  16188  bitsfi  16189  bitsinv1lem  16193  bitsinv1  16194  modprm0  16551  prmgaplem5  16801  prmgaplem6  16802  prmgaplem7  16803  lt6abl  19541  iundisj2  24758  dchrisum0flblem2  26702  crctcshwlkn0lem5  28224  iundisj2f  30974  iundisj2fi  31163  frlmvscadiccat  40274  ssinc  42675  ssdec  42676  elfzfzo  42863  monoords  42884  elfzod  42988  iblspltprt  43563  itgspltprt  43569  fourierdlem20  43717  fourierdlem25  43722  fourierdlem41  43738  fourierdlem48  43744  fourierdlem49  43745  fourierdlem50  43746  fourierdlem79  43775  subsubelfzo0  44876  fzoopth  44877  iccpartiltu  44932  iccpartigtl  44933  iccpartgt  44937  wtgoldbnnsum4prm  45312  bgoldbnnsum3prm  45314  bgoldbtbndlem3  45317  bgoldbtbndlem4  45318  elfzolborelfzop1  45918  m1modmmod  45925  fllog2  45972  nnolog2flm1  45994
  Copyright terms: Public domain W3C validator