![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzo2 | Structured version Visualization version GIF version |
Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
elfzo2 | ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 652 | . . 3 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) | |
2 | df-3an 1087 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) | |
3 | 2 | anbi1i 622 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
4 | eluz2 12832 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) | |
5 | 3ancoma 1096 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) | |
6 | df-3an 1087 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾)) | |
7 | 4, 5, 6 | 3bitri 296 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾)) |
8 | 7 | anbi1i 622 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
9 | 1, 3, 8 | 3bitr4i 302 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
10 | elfzoelz 13636 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ) | |
11 | elfzoel1 13634 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
12 | elfzoel2 13635 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
13 | 10, 11, 12 | 3jca 1126 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
14 | elfzo 13638 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
15 | 13, 14 | biadanii 818 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
16 | 3anass 1093 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) | |
17 | 9, 15, 16 | 3bitr4i 302 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 class class class wbr 5147 ‘cfv 6542 (class class class)co 7411 < clt 11252 ≤ cle 11253 ℤcz 12562 ℤ≥cuz 12826 ..^cfzo 13631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 |
This theorem is referenced by: elfzouz 13640 fzolb 13642 elfzo3 13653 fzouzsplit 13671 prinfzo0 13675 elfzo0 13677 elfzo1 13686 fzo1fzo0n0 13687 eluzgtdifelfzo 13698 ssfzo12bi 13731 elfzonelfzo 13738 elfzomelpfzo 13740 modaddmodup 13903 ccatrn 14543 cshwidxmod 14757 cats1fv 14814 bitsfzolem 16379 bitsfzo 16380 bitsmod 16381 bitsfi 16382 bitsinv1lem 16386 bitsinv1 16387 modprm0 16742 prmgaplem5 16992 prmgaplem6 16993 prmgaplem7 16994 lt6abl 19804 iundisj2 25298 dchrisum0flblem2 27248 crctcshwlkn0lem5 29335 iundisj2f 32088 iundisj2fi 32275 frlmvscadiccat 41386 ssinc 44077 ssdec 44078 elfzfzo 44284 monoords 44305 elfzod 44408 iblspltprt 44987 itgspltprt 44993 fourierdlem20 45141 fourierdlem25 45146 fourierdlem41 45162 fourierdlem48 45168 fourierdlem49 45169 fourierdlem50 45170 fourierdlem79 45199 subsubelfzo0 46332 fzoopth 46333 iccpartiltu 46388 iccpartigtl 46389 iccpartgt 46393 wtgoldbnnsum4prm 46768 bgoldbnnsum3prm 46770 bgoldbtbndlem3 46773 bgoldbtbndlem4 46774 elfzolborelfzop1 47287 m1modmmod 47294 fllog2 47341 nnolog2flm1 47363 |
Copyright terms: Public domain | W3C validator |