| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzo2 | Structured version Visualization version GIF version | ||
| Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| elfzo2 | ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . . 3 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) | |
| 2 | df-3an 1088 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) | |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
| 4 | eluz2 12733 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) | |
| 5 | 3ancoma 1097 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) | |
| 6 | df-3an 1088 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾)) | |
| 7 | 4, 5, 6 | 3bitri 297 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾)) |
| 8 | 7 | anbi1i 624 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≤ 𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
| 9 | 1, 3, 8 | 3bitr4i 303 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) |
| 10 | elfzoelz 13554 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ) | |
| 11 | elfzoel1 13552 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
| 12 | elfzoel2 13553 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
| 13 | 10, 11, 12 | 3jca 1128 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 14 | elfzo 13556 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
| 15 | 13, 14 | biadanii 821 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
| 16 | 3anass 1094 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))) | |
| 17 | 9, 15, 16 | 3bitr4i 303 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 < clt 11141 ≤ cle 11142 ℤcz 12463 ℤ≥cuz 12727 ..^cfzo 13549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 |
| This theorem is referenced by: elfzouz 13558 fzolb 13560 elfzo3 13571 fzouzsplit 13589 prinfzo0 13593 elfzo0 13595 elfzo1 13607 fzo1fzo0n0 13610 eluzgtdifelfzo 13622 ssfzo12bi 13656 fzoopth 13657 elfzonelfzo 13664 elfzomelpfzo 13667 modaddmodup 13836 ccatrn 14492 cshwidxmod 14705 cats1fv 14761 bitsfzolem 16340 bitsfzo 16341 bitsmod 16342 bitsfi 16343 bitsinv1lem 16347 bitsinv1 16348 modprm0 16712 prmgaplem5 16962 prmgaplem6 16963 prmgaplem7 16964 chnso 18525 lt6abl 19802 iundisj2 25472 dchrisum0flblem2 27442 crctcshwlkn0lem5 29787 iundisj2f 32562 iundisj2fi 32771 frlmvscadiccat 42539 ssinc 45124 ssdec 45125 elfzfzo 45318 monoords 45338 elfzod 45438 iblspltprt 46011 itgspltprt 46017 fourierdlem20 46165 fourierdlem25 46170 fourierdlem41 46186 fourierdlem48 46192 fourierdlem49 46193 fourierdlem50 46194 fourierdlem79 46223 subsubelfzo0 47357 m1modmmod 47389 iccpartiltu 47453 iccpartigtl 47454 iccpartgt 47458 wtgoldbnnsum4prm 47833 bgoldbnnsum3prm 47835 bgoldbtbndlem3 47838 bgoldbtbndlem4 47839 gpgedgvtx1 48093 elfzolborelfzop1 48551 fllog2 48600 nnolog2flm1 48622 |
| Copyright terms: Public domain | W3C validator |