MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsfrnel Structured version   Visualization version   GIF version

Theorem xpsfrnel 16837
Description: Elementhood in the target space of the function 𝐹 appearing in xpsval 16845. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpsfrnel (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺

Proof of Theorem xpsfrnel
StepHypRef Expression
1 elixp2 8467 . 2 (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)))
2 3ancoma 1094 . . 3 ((𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)))
3 df2o3 8119 . . . . . . . 8 2o = {∅, 1o}
43raleqi 3415 . . . . . . 7 (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ∀𝑘 ∈ {∅, 1o} (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))
5 0ex 5213 . . . . . . . 8 ∅ ∈ V
6 1oex 8112 . . . . . . . 8 1o ∈ V
7 fveq2 6672 . . . . . . . . 9 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
8 iftrue 4475 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐴)
97, 8eleq12d 2909 . . . . . . . 8 (𝑘 = ∅ → ((𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺‘∅) ∈ 𝐴))
10 fveq2 6672 . . . . . . . . 9 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
11 1n0 8121 . . . . . . . . . . 11 1o ≠ ∅
12 neeq1 3080 . . . . . . . . . . 11 (𝑘 = 1o → (𝑘 ≠ ∅ ↔ 1o ≠ ∅))
1311, 12mpbiri 260 . . . . . . . . . 10 (𝑘 = 1o𝑘 ≠ ∅)
14 ifnefalse 4481 . . . . . . . . . 10 (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
1513, 14syl 17 . . . . . . . . 9 (𝑘 = 1o → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
1610, 15eleq12d 2909 . . . . . . . 8 (𝑘 = 1o → ((𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺‘1o) ∈ 𝐵))
175, 6, 9, 16ralpr 4638 . . . . . . 7 (∀𝑘 ∈ {∅, 1o} (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
184, 17bitri 277 . . . . . 6 (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
19 2onn 8268 . . . . . . . . . 10 2o ∈ ω
20 nnfi 8713 . . . . . . . . . 10 (2o ∈ ω → 2o ∈ Fin)
2119, 20ax-mp 5 . . . . . . . . 9 2o ∈ Fin
22 fnfi 8798 . . . . . . . . 9 ((𝐺 Fn 2o ∧ 2o ∈ Fin) → 𝐺 ∈ Fin)
2321, 22mpan2 689 . . . . . . . 8 (𝐺 Fn 2o𝐺 ∈ Fin)
2423elexd 3516 . . . . . . 7 (𝐺 Fn 2o𝐺 ∈ V)
2524biantrurd 535 . . . . . 6 (𝐺 Fn 2o → (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))))
2618, 25syl5rbbr 288 . . . . 5 (𝐺 Fn 2o → ((𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
2726pm5.32i 577 . . . 4 ((𝐺 Fn 2o ∧ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))) ↔ (𝐺 Fn 2o ∧ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
28 3anass 1091 . . . 4 ((𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))))
29 3anass 1091 . . . 4 ((𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵) ↔ (𝐺 Fn 2o ∧ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
3027, 28, 293bitr4i 305 . . 3 ((𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
312, 30bitri 277 . 2 ((𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
321, 31bitri 277 1 (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  c0 4293  ifcif 4469  {cpr 4571   Fn wfn 6352  cfv 6357  ωcom 7582  1oc1o 8097  2oc2o 8098  Xcixp 8463  Fincfn 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515
This theorem is referenced by:  xpsfrnel2  16839  xpsff1o  16842
  Copyright terms: Public domain W3C validator