![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetrtri2 | Structured version Visualization version GIF version |
Description: The reverse triangle inequality for the distance function of an extended metric. In order to express the "extended absolute value function", we use the distance function xrsdsval 21342 defined on the extended real structure. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
xmetrtri2.1 | ⊢ 𝐾 = (dist‘ℝ*𝑠) |
Ref | Expression |
---|---|
xmetrtri2 | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetcl 24236 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) ∈ ℝ*) | |
2 | 1 | 3adant3r2 1181 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐶) ∈ ℝ*) |
3 | xmetcl 24236 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷𝐶) ∈ ℝ*) | |
4 | 3 | 3adant3r1 1180 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) ∈ ℝ*) |
5 | xmetrtri2.1 | . . . 4 ⊢ 𝐾 = (dist‘ℝ*𝑠) | |
6 | 5 | xrsdsval 21342 | . . 3 ⊢ (((𝐴𝐷𝐶) ∈ ℝ* ∧ (𝐵𝐷𝐶) ∈ ℝ*) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)))) |
7 | 2, 4, 6 | syl2anc 583 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)))) |
8 | 3ancoma 1096 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) | |
9 | xmetrtri 24260 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐵𝐷𝐴)) | |
10 | 8, 9 | sylan2b 593 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐵𝐷𝐴)) |
11 | xmetsym 24252 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | |
12 | 11 | 3adant3r3 1182 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
13 | 10, 12 | breqtrrd 5176 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐴𝐷𝐵)) |
14 | xmetrtri 24260 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) | |
15 | breq1 5151 | . . . 4 ⊢ (((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) → (((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))) | |
16 | breq1 5151 | . . . 4 ⊢ (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) → (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))) | |
17 | 15, 16 | ifboth 4568 | . . 3 ⊢ ((((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐴𝐷𝐵) ∧ ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) → if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) |
18 | 13, 14, 17 | syl2anc 583 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) |
19 | 7, 18 | eqbrtrd 5170 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ifcif 4529 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 ℝ*cxr 11277 ≤ cle 11279 -𝑒cxne 13121 +𝑒 cxad 13122 distcds 17241 ℝ*𝑠cxrs 17481 ∞Metcxmet 21263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-mulr 17246 df-tset 17251 df-ple 17252 df-ds 17254 df-xrs 17483 df-xmet 21271 |
This theorem is referenced by: metrtri 24262 metdcnlem 24751 |
Copyright terms: Public domain | W3C validator |