MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetrtri2 Structured version   Visualization version   GIF version

Theorem xmetrtri2 24295
Description: The reverse triangle inequality for the distance function of an extended metric. In order to express the "extended absolute value function", we use the distance function xrsdsval 21378 defined on the extended real structure. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xmetrtri2.1 𝐾 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xmetrtri2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))

Proof of Theorem xmetrtri2
StepHypRef Expression
1 xmetcl 24270 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ ℝ*)
213adant3r2 1184 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ ℝ*)
3 xmetcl 24270 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) ∈ ℝ*)
433adant3r1 1183 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ∈ ℝ*)
5 xmetrtri2.1 . . . 4 𝐾 = (dist‘ℝ*𝑠)
65xrsdsval 21378 . . 3 (((𝐴𝐷𝐶) ∈ ℝ* ∧ (𝐵𝐷𝐶) ∈ ℝ*) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))))
72, 4, 6syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))))
8 3ancoma 1097 . . . . 5 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐵𝑋𝐴𝑋𝐶𝑋))
9 xmetrtri 24294 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵𝑋𝐴𝑋𝐶𝑋)) → ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐵𝐷𝐴))
108, 9sylan2b 594 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐵𝐷𝐴))
11 xmetsym 24286 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
12113adant3r3 1185 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1310, 12breqtrrd 5147 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐴𝐷𝐵))
14 xmetrtri 24294 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))
15 breq1 5122 . . . 4 (((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) → (((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)))
16 breq1 5122 . . . 4 (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) = if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) → (((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵) ↔ if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)))
1715, 16ifboth 4540 . . 3 ((((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)) ≤ (𝐴𝐷𝐵) ∧ ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) → if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
1813, 14, 17syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → if((𝐴𝐷𝐶) ≤ (𝐵𝐷𝐶), ((𝐵𝐷𝐶) +𝑒 -𝑒(𝐴𝐷𝐶)), ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
197, 18eqbrtrd 5141 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  ifcif 4500   class class class wbr 5119  cfv 6531  (class class class)co 7405  *cxr 11268  cle 11270  -𝑒cxne 13125   +𝑒 cxad 13126  distcds 17280  *𝑠cxrs 17514  ∞Metcxmet 21300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-tset 17290  df-ple 17291  df-ds 17293  df-xrs 17516  df-xmet 21308
This theorem is referenced by:  metrtri  24296  metdcnlem  24776
  Copyright terms: Public domain W3C validator