MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringcinv Structured version   Visualization version   GIF version

Theorem ringcinv 20693
Description: An inverse in the category of unital rings is the converse operation. (Contributed by AV, 14-Feb-2020.)
Hypotheses
Ref Expression
ringcsect.c 𝐶 = (RingCat‘𝑈)
ringcsect.b 𝐵 = (Base‘𝐶)
ringcsect.u (𝜑𝑈𝑉)
ringcsect.x (𝜑𝑋𝐵)
ringcsect.y (𝜑𝑌𝐵)
ringcinv.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
ringcinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)))

Proof of Theorem ringcinv
StepHypRef Expression
1 ringcsect.b . . 3 𝐵 = (Base‘𝐶)
2 ringcinv.n . . 3 𝑁 = (Inv‘𝐶)
3 ringcsect.u . . . 4 (𝜑𝑈𝑉)
4 ringcsect.c . . . . 5 𝐶 = (RingCat‘𝑈)
54ringccat 20685 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 ringcsect.x . . 3 (𝜑𝑋𝐵)
8 ringcsect.y . . 3 (𝜑𝑌𝐵)
9 eqid 2740 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 6, 7, 8, 9isinv 17821 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
11 eqid 2740 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
124, 1, 3, 7, 8, 11, 9ringcsect 20692 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
13 df-3an 1089 . . . . 5 ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
1412, 13bitrdi 287 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
15 eqid 2740 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
164, 1, 3, 8, 7, 15, 9ringcsect 20692 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
17 3ancoma 1098 . . . . . 6 ((𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
18 df-3an 1089 . . . . . 6 ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
1917, 18bitri 275 . . . . 5 ((𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
2016, 19bitrdi 287 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2114, 20anbi12d 631 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
22 anandi 675 . . 3 ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2321, 22bitrdi 287 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
24 simplrl 776 . . . . . 6 (((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → 𝐹 ∈ (𝑋 RingHom 𝑌))
2524adantl 481 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → 𝐹 ∈ (𝑋 RingHom 𝑌))
2611, 15rhmf 20511 . . . . . . . . . 10 (𝐹 ∈ (𝑋 RingHom 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
2715, 11rhmf 20511 . . . . . . . . . 10 (𝐺 ∈ (𝑌 RingHom 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
2826, 27anim12i 612 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
2928ad2antlr 726 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
30 simpr 484 . . . . . . . . 9 ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
3130adantl 481 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
32 simpr 484 . . . . . . . . 9 (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3332ad2antrl 727 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3429, 31, 33jca32 515 . . . . . . 7 (((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
3534adantl 481 . . . . . 6 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
36 fcof1o 7332 . . . . . . 7 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺))
37 eqcom 2747 . . . . . . . 8 (𝐹 = 𝐺𝐺 = 𝐹)
3837anbi2i 622 . . . . . . 7 ((𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺) ↔ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
3936, 38sylib 218 . . . . . 6 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
4035, 39syl 17 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
41 anass 468 . . . . 5 (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹)))
4225, 40, 41sylanbrc 582 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹))
4311, 15isrim 20518 . . . . . . 7 (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)))
4443a1i 11 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
4544anbi1d 630 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4645adantr 480 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4742, 46mpbird 257 . . 3 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹))
48 rimrhm 20522 . . . . . 6 (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹 ∈ (𝑋 RingHom 𝑌))
4948ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹 ∈ (𝑋 RingHom 𝑌))
50 isrim0 20509 . . . . . . . . 9 (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹 ∈ (𝑌 RingHom 𝑋)))
5150simprbi 496 . . . . . . . 8 (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹 ∈ (𝑌 RingHom 𝑋))
52 eleq1 2832 . . . . . . . 8 (𝐺 = 𝐹 → (𝐺 ∈ (𝑌 RingHom 𝑋) ↔ 𝐹 ∈ (𝑌 RingHom 𝑋)))
5351, 52syl5ibrcom 247 . . . . . . 7 (𝐹 ∈ (𝑋 RingIso 𝑌) → (𝐺 = 𝐹𝐺 ∈ (𝑌 RingHom 𝑋)))
5453imp 406 . . . . . 6 ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹) → 𝐺 ∈ (𝑌 RingHom 𝑋))
5554adantl 481 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → 𝐺 ∈ (𝑌 RingHom 𝑋))
56 coeq1 5882 . . . . . . 7 (𝐺 = 𝐹 → (𝐺𝐹) = (𝐹𝐹))
5756ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
5811, 15rimf1o 20520 . . . . . . . 8 (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
5958ad2antrl 727 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
60 f1ococnv1 6891 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6159, 60syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6257, 61eqtrd 2780 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
6349, 55, 62jca31 514 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
6450biimpi 216 . . . . . 6 (𝐹 ∈ (𝑋 RingIso 𝑌) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹 ∈ (𝑌 RingHom 𝑋)))
6564ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹 ∈ (𝑌 RingHom 𝑋)))
6652ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺 ∈ (𝑌 RingHom 𝑋) ↔ 𝐹 ∈ (𝑌 RingHom 𝑋)))
6766anbi2d 629 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹 ∈ (𝑌 RingHom 𝑋))))
6865, 67mpbird 257 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)))
69 coeq2 5883 . . . . . . 7 (𝐺 = 𝐹 → (𝐹𝐺) = (𝐹𝐹))
7069ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
71 f1ococnv2 6889 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
7259, 71syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
7370, 72eqtrd 2780 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
7468, 62, 73jca31 514 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
7563, 68, 74jca31 514 . . 3 ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)) → ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
7647, 75impbida 800 . 2 (𝜑 → (((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)))
7710, 23, 763bitrd 305 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166   I cid 5592  ccnv 5699  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Basecbs 17258  Catccat 17722  Sectcsect 17805  Invcinv 17806   RingHom crh 20495   RingIso crs 20496  RingCatcringc 20667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-hom 17335  df-cco 17336  df-0g 17501  df-cat 17726  df-cid 17727  df-homf 17728  df-sect 17808  df-inv 17809  df-ssc 17871  df-resc 17872  df-subc 17873  df-estrc 18191  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-rhm 20498  df-rim 20499  df-ringc 20668
This theorem is referenced by:  ringciso  20694
  Copyright terms: Public domain W3C validator