Proof of Theorem ringcinv
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ringcsect.b | . . 3
⊢ 𝐵 = (Base‘𝐶) | 
| 2 |  | ringcinv.n | . . 3
⊢ 𝑁 = (Inv‘𝐶) | 
| 3 |  | ringcsect.u | . . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) | 
| 4 |  | ringcsect.c | . . . . 5
⊢ 𝐶 = (RingCat‘𝑈) | 
| 5 | 4 | ringccat 20663 | . . . 4
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | 
| 6 | 3, 5 | syl 17 | . . 3
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 7 |  | ringcsect.x | . . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 8 |  | ringcsect.y | . . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| 9 |  | eqid 2737 | . . 3
⊢
(Sect‘𝐶) =
(Sect‘𝐶) | 
| 10 | 1, 2, 6, 7, 8, 9 | isinv 17804 | . 2
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) | 
| 11 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) | 
| 12 | 4, 1, 3, 7, 8, 11,
9 | ringcsect 20670 | . . . . 5
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) | 
| 13 |  | df-3an 1089 | . . . . 5
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) | 
| 14 | 12, 13 | bitrdi 287 | . . . 4
⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) | 
| 15 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑌) | 
| 16 | 4, 1, 3, 8, 7, 15,
9 | ringcsect 20670 | . . . . 5
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) | 
| 17 |  | 3ancoma 1098 | . . . . . 6
⊢ ((𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) | 
| 18 |  | df-3an 1089 | . . . . . 6
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) | 
| 19 | 17, 18 | bitri 275 | . . . . 5
⊢ ((𝐺 ∈ (𝑌 RingHom 𝑋) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) | 
| 20 | 16, 19 | bitrdi 287 | . . . 4
⊢ (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) | 
| 21 | 14, 20 | anbi12d 632 | . . 3
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))))) | 
| 22 |  | anandi 676 | . . 3
⊢ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) ↔ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) | 
| 23 | 21, 22 | bitrdi 287 | . 2
⊢ (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))))) | 
| 24 |  | simplrl 777 | . . . . . 6
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → 𝐹 ∈ (𝑋 RingHom 𝑌)) | 
| 25 | 24 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → 𝐹 ∈ (𝑋 RingHom 𝑌)) | 
| 26 | 11, 15 | rhmf 20485 | . . . . . . . . . 10
⊢ (𝐹 ∈ (𝑋 RingHom 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) | 
| 27 | 15, 11 | rhmf 20485 | . . . . . . . . . 10
⊢ (𝐺 ∈ (𝑌 RingHom 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) | 
| 28 | 26, 27 | anim12i 613 | . . . . . . . . 9
⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋))) | 
| 29 | 28 | ad2antlr 727 | . . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋))) | 
| 30 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) | 
| 31 | 30 | adantl 481 | . . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) | 
| 32 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) | 
| 33 | 32 | ad2antrl 728 | . . . . . . . 8
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) | 
| 34 | 29, 31, 33 | jca32 515 | . . . . . . 7
⊢
(((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) | 
| 35 | 34 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))))) | 
| 36 |  | fcof1o 7316 | . . . . . . 7
⊢ (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ ◡𝐹 = 𝐺)) | 
| 37 |  | eqcom 2744 | . . . . . . . 8
⊢ (◡𝐹 = 𝐺 ↔ 𝐺 = ◡𝐹) | 
| 38 | 37 | anbi2i 623 | . . . . . . 7
⊢ ((𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ ◡𝐹 = 𝐺) ↔ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) | 
| 39 | 36, 38 | sylib 218 | . . . . . 6
⊢ (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) | 
| 40 | 35, 39 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹)) | 
| 41 |  | anass 468 | . . . . 5
⊢ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = ◡𝐹))) | 
| 42 | 25, 40, 41 | sylanbrc 583 | . . . 4
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹)) | 
| 43 | 11, 15 | isrim 20492 | . . . . . . 7
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))) | 
| 44 | 43 | a1i 11 | . . . . . 6
⊢ (𝜑 → (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)))) | 
| 45 | 44 | anbi1d 631 | . . . . 5
⊢ (𝜑 → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹))) | 
| 46 | 45 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = ◡𝐹))) | 
| 47 | 42, 46 | mpbird 257 | . . 3
⊢ ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) | 
| 48 |  | rimrhm 20496 | . . . . . 6
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹 ∈ (𝑋 RingHom 𝑌)) | 
| 49 | 48 | ad2antrl 728 | . . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐹 ∈ (𝑋 RingHom 𝑌)) | 
| 50 |  | isrim0 20483 | . . . . . . . . 9
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) | 
| 51 | 50 | simprbi 496 | . . . . . . . 8
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → ◡𝐹 ∈ (𝑌 RingHom 𝑋)) | 
| 52 |  | eleq1 2829 | . . . . . . . 8
⊢ (𝐺 = ◡𝐹 → (𝐺 ∈ (𝑌 RingHom 𝑋) ↔ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) | 
| 53 | 51, 52 | syl5ibrcom 247 | . . . . . . 7
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → (𝐺 = ◡𝐹 → 𝐺 ∈ (𝑌 RingHom 𝑋))) | 
| 54 | 53 | imp 406 | . . . . . 6
⊢ ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹) → 𝐺 ∈ (𝑌 RingHom 𝑋)) | 
| 55 | 54 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐺 ∈ (𝑌 RingHom 𝑋)) | 
| 56 |  | coeq1 5868 | . . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) | 
| 57 | 56 | ad2antll 729 | . . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) | 
| 58 | 11, 15 | rimf1o 20494 | . . . . . . . 8
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) | 
| 59 | 58 | ad2antrl 728 | . . . . . . 7
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) | 
| 60 |  | f1ococnv1 6877 | . . . . . . 7
⊢ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) | 
| 61 | 59, 60 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) | 
| 62 | 57, 61 | eqtrd 2777 | . . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) | 
| 63 | 49, 55, 62 | jca31 514 | . . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋)))) | 
| 64 | 50 | biimpi 216 | . . . . . 6
⊢ (𝐹 ∈ (𝑋 RingIso 𝑌) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) | 
| 65 | 64 | ad2antrl 728 | . . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) | 
| 66 | 52 | ad2antll 729 | . . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐺 ∈ (𝑌 RingHom 𝑋) ↔ ◡𝐹 ∈ (𝑌 RingHom 𝑋))) | 
| 67 | 66 | anbi2d 630 | . . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ ◡𝐹 ∈ (𝑌 RingHom 𝑋)))) | 
| 68 | 65, 67 | mpbird 257 | . . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) | 
| 69 |  | coeq2 5869 | . . . . . . 7
⊢ (𝐺 = ◡𝐹 → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) | 
| 70 | 69 | ad2antll 729 | . . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = (𝐹 ∘ ◡𝐹)) | 
| 71 |  | f1ococnv2 6875 | . . . . . . 7
⊢ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝑌))) | 
| 72 | 59, 71 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝑌))) | 
| 73 | 70, 72 | eqtrd 2777 | . . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))) | 
| 74 | 68, 62, 73 | jca31 514 | . . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) | 
| 75 | 63, 68, 74 | jca31 514 | . . 3
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹)) → ((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌))))) | 
| 76 | 47, 75 | impbida 801 | . 2
⊢ (𝜑 → (((((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝑌)))) ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) | 
| 77 | 10, 23, 76 | 3bitrd 305 | 1
⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) |