Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzto1st Structured version   Visualization version   GIF version

Theorem fzto1st 31272
Description: The function moving one element to the first position (and shifting all elements before it) is a permutation. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
psgnfzto1st.g 𝐺 = (SymGrp‘𝐷)
psgnfzto1st.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
fzto1st (𝐼𝐷𝑃𝐵)
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁   𝐵,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝐺(𝑖)

Proof of Theorem fzto1st
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfz1b 13254 . . . . 5 (𝐼 ∈ (1...𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
21biimpi 215 . . . 4 (𝐼 ∈ (1...𝑁) → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
3 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
42, 3eleq2s 2857 . . 3 (𝐼𝐷 → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
5 3ancoma 1096 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
64, 5sylibr 233 . 2 (𝐼𝐷 → (𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁))
7 df-3an 1087 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁))
8 breq1 5073 . . . . . 6 (𝑚 = 1 → (𝑚𝑁 ↔ 1 ≤ 𝑁))
9 simpl 482 . . . . . . . . . 10 ((𝑚 = 1 ∧ 𝑖𝐷) → 𝑚 = 1)
109breq2d 5082 . . . . . . . . . . 11 ((𝑚 = 1 ∧ 𝑖𝐷) → (𝑖𝑚𝑖 ≤ 1))
1110ifbid 4479 . . . . . . . . . 10 ((𝑚 = 1 ∧ 𝑖𝐷) → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))
129, 11ifeq12d 4477 . . . . . . . . 9 ((𝑚 = 1 ∧ 𝑖𝐷) → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
1312mpteq2dva 5170 . . . . . . . 8 (𝑚 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))))
14 eqid 2738 . . . . . . . . 9 1 = 1
15 eqid 2738 . . . . . . . . . 10 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
163, 15fzto1st1 31271 . . . . . . . . 9 (1 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷))
1714, 16ax-mp 5 . . . . . . . 8 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷)
1813, 17eqtrdi 2795 . . . . . . 7 (𝑚 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷))
1918eleq1d 2823 . . . . . 6 (𝑚 = 1 → ((𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵 ↔ ( I ↾ 𝐷) ∈ 𝐵))
208, 19imbi12d 344 . . . . 5 (𝑚 = 1 → ((𝑚𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵) ↔ (1 ≤ 𝑁 → ( I ↾ 𝐷) ∈ 𝐵)))
21 breq1 5073 . . . . . 6 (𝑚 = 𝑛 → (𝑚𝑁𝑛𝑁))
22 simpl 482 . . . . . . . . 9 ((𝑚 = 𝑛𝑖𝐷) → 𝑚 = 𝑛)
2322breq2d 5082 . . . . . . . . . 10 ((𝑚 = 𝑛𝑖𝐷) → (𝑖𝑚𝑖𝑛))
2423ifbid 4479 . . . . . . . . 9 ((𝑚 = 𝑛𝑖𝐷) → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝑛, (𝑖 − 1), 𝑖))
2522, 24ifeq12d 4477 . . . . . . . 8 ((𝑚 = 𝑛𝑖𝐷) → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))
2625mpteq2dva 5170 . . . . . . 7 (𝑚 = 𝑛 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))
2726eleq1d 2823 . . . . . 6 (𝑚 = 𝑛 → ((𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵 ↔ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵))
2821, 27imbi12d 344 . . . . 5 (𝑚 = 𝑛 → ((𝑚𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵) ↔ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)))
29 breq1 5073 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑚𝑁 ↔ (𝑛 + 1) ≤ 𝑁))
30 simpl 482 . . . . . . . . 9 ((𝑚 = (𝑛 + 1) ∧ 𝑖𝐷) → 𝑚 = (𝑛 + 1))
3130breq2d 5082 . . . . . . . . . 10 ((𝑚 = (𝑛 + 1) ∧ 𝑖𝐷) → (𝑖𝑚𝑖 ≤ (𝑛 + 1)))
3231ifbid 4479 . . . . . . . . 9 ((𝑚 = (𝑛 + 1) ∧ 𝑖𝐷) → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))
3330, 32ifeq12d 4477 . . . . . . . 8 ((𝑚 = (𝑛 + 1) ∧ 𝑖𝐷) → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))
3433mpteq2dva 5170 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))))
3534eleq1d 2823 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵 ↔ (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) ∈ 𝐵))
3629, 35imbi12d 344 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵) ↔ ((𝑛 + 1) ≤ 𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) ∈ 𝐵)))
37 breq1 5073 . . . . . 6 (𝑚 = 𝐼 → (𝑚𝑁𝐼𝑁))
38 simpl 482 . . . . . . . . . 10 ((𝑚 = 𝐼𝑖𝐷) → 𝑚 = 𝐼)
3938breq2d 5082 . . . . . . . . . . 11 ((𝑚 = 𝐼𝑖𝐷) → (𝑖𝑚𝑖𝐼))
4039ifbid 4479 . . . . . . . . . 10 ((𝑚 = 𝐼𝑖𝐷) → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝐼, (𝑖 − 1), 𝑖))
4138, 40ifeq12d 4477 . . . . . . . . 9 ((𝑚 = 𝐼𝑖𝐷) → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4241mpteq2dva 5170 . . . . . . . 8 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))))
43 psgnfzto1st.p . . . . . . . 8 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4442, 43eqtr4di 2797 . . . . . . 7 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = 𝑃)
4544eleq1d 2823 . . . . . 6 (𝑚 = 𝐼 → ((𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵𝑃𝐵))
4637, 45imbi12d 344 . . . . 5 (𝑚 = 𝐼 → ((𝑚𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵) ↔ (𝐼𝑁𝑃𝐵)))
47 fzfi 13620 . . . . . . . . 9 (1...𝑁) ∈ Fin
483, 47eqeltri 2835 . . . . . . . 8 𝐷 ∈ Fin
49 psgnfzto1st.g . . . . . . . . 9 𝐺 = (SymGrp‘𝐷)
5049idresperm 18908 . . . . . . . 8 (𝐷 ∈ Fin → ( I ↾ 𝐷) ∈ (Base‘𝐺))
5148, 50ax-mp 5 . . . . . . 7 ( I ↾ 𝐷) ∈ (Base‘𝐺)
52 psgnfzto1st.b . . . . . . 7 𝐵 = (Base‘𝐺)
5351, 52eleqtrri 2838 . . . . . 6 ( I ↾ 𝐷) ∈ 𝐵
54532a1i 12 . . . . 5 (𝑁 ∈ ℕ → (1 ≤ 𝑁 → ( I ↾ 𝐷) ∈ 𝐵))
55 simplr 765 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℕ)
5655peano2nnd 11920 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℕ)
57 simpll 763 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ)
58 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ≤ 𝑁)
5956, 57, 583jca 1126 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
60 elfz1b 13254 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (1...𝑁) ↔ ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
6159, 60sylibr 233 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ (1...𝑁))
6261, 3eleqtrrdi 2850 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ 𝐷)
633psgnfzto1stlem 31269 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
6455, 62, 63syl2anc 583 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
6564adantlr 711 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
66 eqid 2738 . . . . . . . . . 10 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
6766, 49, 52symgtrf 18992 . . . . . . . . 9 ran (pmTrsp‘𝐷) ⊆ 𝐵
68 eqid 2738 . . . . . . . . . . . 12 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
693, 68pmtrto1cl 31268 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
7055, 62, 69syl2anc 583 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
7170adantlr 711 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
7267, 71sselid 3915 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵)
7355nnred 11918 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℝ)
74 1red 10907 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 1 ∈ ℝ)
7573, 74readdcld 10935 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℝ)
7657nnred 11918 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ)
7773lep1d 11836 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ (𝑛 + 1))
7873, 75, 76, 77, 58letrd 11062 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
7978adantlr 711 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
80 simplr 765 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵))
8179, 80mpd 15 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)
82 eqid 2738 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
8349, 52, 82symgov 18906 . . . . . . . . 9 ((((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})(+g𝐺)(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
8449, 52, 82symgcl 18907 . . . . . . . . 9 ((((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})(+g𝐺)(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) ∈ 𝐵)
8583, 84eqeltrrd 2840 . . . . . . . 8 ((((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) ∈ 𝐵)
8672, 81, 85syl2anc 583 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) ∈ 𝐵)
8765, 86eqeltrd 2839 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) ∈ 𝐵)
8887ex 412 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) → ((𝑛 + 1) ≤ 𝑁 → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) ∈ 𝐵))
8920, 28, 36, 46, 54, 88nnindd 11923 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝐼𝑁𝑃𝐵))
9089imp 406 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁) → 𝑃𝐵)
917, 90sylbi 216 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) → 𝑃𝐵)
926, 91syl 17 1 (𝐼𝐷𝑃𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  ifcif 4456  {cpr 4560   class class class wbr 5070  cmpt 5153   I cid 5479  ran crn 5581  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  Fincfn 8691  1c1 10803   + caddc 10805  cle 10941  cmin 11135  cn 11903  ...cfz 13168  Basecbs 16840  +gcplusg 16888  SymGrpcsymg 18889  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-efmnd 18423  df-symg 18890  df-pmtr 18965
This theorem is referenced by:  fzto1stinvn  31273  psgnfzto1st  31274  madjusmdetlem2  31680  madjusmdetlem3  31681  madjusmdetlem4  31682
  Copyright terms: Public domain W3C validator