Step | Hyp | Ref
| Expression |
1 | | elfz1b 13324 |
. . . . 5
⊢ (𝐼 ∈ (1...𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
2 | 1 | biimpi 215 |
. . . 4
⊢ (𝐼 ∈ (1...𝑁) → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
3 | | psgnfzto1st.d |
. . . 4
⊢ 𝐷 = (1...𝑁) |
4 | 2, 3 | eleq2s 2859 |
. . 3
⊢ (𝐼 ∈ 𝐷 → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
5 | | 3ancoma 1097 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
6 | 4, 5 | sylibr 233 |
. 2
⊢ (𝐼 ∈ 𝐷 → (𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝑁)) |
7 | | df-3an 1088 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝑁) ↔ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼 ≤ 𝑁)) |
8 | | breq1 5082 |
. . . . . 6
⊢ (𝑚 = 1 → (𝑚 ≤ 𝑁 ↔ 1 ≤ 𝑁)) |
9 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑚 = 1 ∧ 𝑖 ∈ 𝐷) → 𝑚 = 1) |
10 | 9 | breq2d 5091 |
. . . . . . . . . . 11
⊢ ((𝑚 = 1 ∧ 𝑖 ∈ 𝐷) → (𝑖 ≤ 𝑚 ↔ 𝑖 ≤ 1)) |
11 | 10 | ifbid 4488 |
. . . . . . . . . 10
⊢ ((𝑚 = 1 ∧ 𝑖 ∈ 𝐷) → if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)) |
12 | 9, 11 | ifeq12d 4486 |
. . . . . . . . 9
⊢ ((𝑚 = 1 ∧ 𝑖 ∈ 𝐷) → if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) |
13 | 12 | mpteq2dva 5179 |
. . . . . . . 8
⊢ (𝑚 = 1 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) |
14 | | eqid 2740 |
. . . . . . . . 9
⊢ 1 =
1 |
15 | | eqid 2740 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) |
16 | 3, 15 | fzto1st1 31365 |
. . . . . . . . 9
⊢ (1 = 1
→ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷)) |
17 | 14, 16 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷) |
18 | 13, 17 | eqtrdi 2796 |
. . . . . . 7
⊢ (𝑚 = 1 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷)) |
19 | 18 | eleq1d 2825 |
. . . . . 6
⊢ (𝑚 = 1 → ((𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵 ↔ ( I ↾ 𝐷) ∈ 𝐵)) |
20 | 8, 19 | imbi12d 345 |
. . . . 5
⊢ (𝑚 = 1 → ((𝑚 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵) ↔ (1 ≤ 𝑁 → ( I ↾ 𝐷) ∈ 𝐵))) |
21 | | breq1 5082 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (𝑚 ≤ 𝑁 ↔ 𝑛 ≤ 𝑁)) |
22 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑛 ∧ 𝑖 ∈ 𝐷) → 𝑚 = 𝑛) |
23 | 22 | breq2d 5091 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑛 ∧ 𝑖 ∈ 𝐷) → (𝑖 ≤ 𝑚 ↔ 𝑖 ≤ 𝑛)) |
24 | 23 | ifbid 4488 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑛 ∧ 𝑖 ∈ 𝐷) → if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)) |
25 | 22, 24 | ifeq12d 4486 |
. . . . . . . 8
⊢ ((𝑚 = 𝑛 ∧ 𝑖 ∈ 𝐷) → if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) |
26 | 25 | mpteq2dva 5179 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) |
27 | 26 | eleq1d 2825 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵 ↔ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) |
28 | 21, 27 | imbi12d 345 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((𝑚 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵) ↔ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵))) |
29 | | breq1 5082 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (𝑚 ≤ 𝑁 ↔ (𝑛 + 1) ≤ 𝑁)) |
30 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑚 = (𝑛 + 1) ∧ 𝑖 ∈ 𝐷) → 𝑚 = (𝑛 + 1)) |
31 | 30 | breq2d 5091 |
. . . . . . . . . 10
⊢ ((𝑚 = (𝑛 + 1) ∧ 𝑖 ∈ 𝐷) → (𝑖 ≤ 𝑚 ↔ 𝑖 ≤ (𝑛 + 1))) |
32 | 31 | ifbid 4488 |
. . . . . . . . 9
⊢ ((𝑚 = (𝑛 + 1) ∧ 𝑖 ∈ 𝐷) → if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)) |
33 | 30, 32 | ifeq12d 4486 |
. . . . . . . 8
⊢ ((𝑚 = (𝑛 + 1) ∧ 𝑖 ∈ 𝐷) → if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) |
34 | 33 | mpteq2dva 5179 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) |
35 | 34 | eleq1d 2825 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → ((𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵 ↔ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) ∈ 𝐵)) |
36 | 29, 35 | imbi12d 345 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → ((𝑚 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵) ↔ ((𝑛 + 1) ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) ∈ 𝐵))) |
37 | | breq1 5082 |
. . . . . 6
⊢ (𝑚 = 𝐼 → (𝑚 ≤ 𝑁 ↔ 𝐼 ≤ 𝑁)) |
38 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝐼 ∧ 𝑖 ∈ 𝐷) → 𝑚 = 𝐼) |
39 | 38 | breq2d 5091 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝐼 ∧ 𝑖 ∈ 𝐷) → (𝑖 ≤ 𝑚 ↔ 𝑖 ≤ 𝐼)) |
40 | 39 | ifbid 4488 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝐼 ∧ 𝑖 ∈ 𝐷) → if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) |
41 | 38, 40 | ifeq12d 4486 |
. . . . . . . . 9
⊢ ((𝑚 = 𝐼 ∧ 𝑖 ∈ 𝐷) → if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
42 | 41 | mpteq2dva 5179 |
. . . . . . . 8
⊢ (𝑚 = 𝐼 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)))) |
43 | | psgnfzto1st.p |
. . . . . . . 8
⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
44 | 42, 43 | eqtr4di 2798 |
. . . . . . 7
⊢ (𝑚 = 𝐼 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) = 𝑃) |
45 | 44 | eleq1d 2825 |
. . . . . 6
⊢ (𝑚 = 𝐼 → ((𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵 ↔ 𝑃 ∈ 𝐵)) |
46 | 37, 45 | imbi12d 345 |
. . . . 5
⊢ (𝑚 = 𝐼 → ((𝑚 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖 ≤ 𝑚, (𝑖 − 1), 𝑖))) ∈ 𝐵) ↔ (𝐼 ≤ 𝑁 → 𝑃 ∈ 𝐵))) |
47 | | fzfi 13690 |
. . . . . . . . 9
⊢
(1...𝑁) ∈
Fin |
48 | 3, 47 | eqeltri 2837 |
. . . . . . . 8
⊢ 𝐷 ∈ Fin |
49 | | psgnfzto1st.g |
. . . . . . . . 9
⊢ 𝐺 = (SymGrp‘𝐷) |
50 | 49 | idresperm 18991 |
. . . . . . . 8
⊢ (𝐷 ∈ Fin → ( I ↾
𝐷) ∈ (Base‘𝐺)) |
51 | 48, 50 | ax-mp 5 |
. . . . . . 7
⊢ ( I
↾ 𝐷) ∈
(Base‘𝐺) |
52 | | psgnfzto1st.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
53 | 51, 52 | eleqtrri 2840 |
. . . . . 6
⊢ ( I
↾ 𝐷) ∈ 𝐵 |
54 | 53 | 2a1i 12 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (1 ≤
𝑁 → ( I ↾ 𝐷) ∈ 𝐵)) |
55 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℕ) |
56 | 55 | peano2nnd 11990 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℕ) |
57 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ) |
58 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ≤ 𝑁) |
59 | 56, 57, 58 | 3jca 1127 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁)) |
60 | | elfz1b 13324 |
. . . . . . . . . . 11
⊢ ((𝑛 + 1) ∈ (1...𝑁) ↔ ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁)) |
61 | 59, 60 | sylibr 233 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ (1...𝑁)) |
62 | 61, 3 | eleqtrrdi 2852 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ 𝐷) |
63 | 3 | psgnfzto1stlem 31363 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) |
64 | 55, 62, 63 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) |
65 | 64 | adantlr 712 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) |
66 | | eqid 2740 |
. . . . . . . . . 10
⊢ ran
(pmTrsp‘𝐷) = ran
(pmTrsp‘𝐷) |
67 | 66, 49, 52 | symgtrf 19075 |
. . . . . . . . 9
⊢ ran
(pmTrsp‘𝐷) ⊆
𝐵 |
68 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
69 | 3, 68 | pmtrto1cl 31362 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷)) |
70 | 55, 62, 69 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷)) |
71 | 70 | adantlr 712 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷)) |
72 | 67, 71 | sselid 3924 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵) |
73 | 55 | nnred 11988 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℝ) |
74 | | 1red 10977 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 1 ∈ ℝ) |
75 | 73, 74 | readdcld 11005 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℝ) |
76 | 57 | nnred 11988 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ) |
77 | 73 | lep1d 11906 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ (𝑛 + 1)) |
78 | 73, 75, 76, 77, 58 | letrd 11132 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ 𝑁) |
79 | 78 | adantlr 712 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ 𝑁) |
80 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) |
81 | 79, 80 | mpd 15 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) |
82 | | eqid 2740 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
83 | 49, 52, 82 | symgov 18989 |
. . . . . . . . 9
⊢
((((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})(+g‘𝐺)(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))))) |
84 | 49, 52, 82 | symgcl 18990 |
. . . . . . . . 9
⊢
((((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})(+g‘𝐺)(𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) ∈ 𝐵) |
85 | 83, 84 | eqeltrrd 2842 |
. . . . . . . 8
⊢
((((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) ∈ 𝐵) |
86 | 72, 81, 85 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖)))) ∈ 𝐵) |
87 | 65, 86 | eqeltrd 2841 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) ∈ 𝐵) |
88 | 87 | ex 413 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖 ≤ 𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)) → ((𝑛 + 1) ≤ 𝑁 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) ∈ 𝐵)) |
89 | 20, 28, 36, 46, 54, 88 | nnindd 11993 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝐼 ≤ 𝑁 → 𝑃 ∈ 𝐵)) |
90 | 89 | imp 407 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼 ≤ 𝑁) → 𝑃 ∈ 𝐵) |
91 | 7, 90 | sylbi 216 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝑁) → 𝑃 ∈ 𝐵) |
92 | 6, 91 | syl 17 |
1
⊢ (𝐼 ∈ 𝐷 → 𝑃 ∈ 𝐵) |