Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcinvALTV Structured version   Visualization version   GIF version

Theorem rngcinvALTV 48251
Description: An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcsectALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcsectALTV.b 𝐵 = (Base‘𝐶)
rngcsectALTV.u (𝜑𝑈𝑉)
rngcsectALTV.x (𝜑𝑋𝐵)
rngcsectALTV.y (𝜑𝑌𝐵)
rngcinvALTV.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
rngcinvALTV (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)))

Proof of Theorem rngcinvALTV
StepHypRef Expression
1 rngcsectALTV.b . . 3 𝐵 = (Base‘𝐶)
2 rngcinvALTV.n . . 3 𝑁 = (Inv‘𝐶)
3 rngcsectALTV.u . . . 4 (𝜑𝑈𝑉)
4 rngcsectALTV.c . . . . 5 𝐶 = (RngCatALTV‘𝑈)
54rngccatALTV 48248 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 rngcsectALTV.x . . 3 (𝜑𝑋𝐵)
8 rngcsectALTV.y . . 3 (𝜑𝑌𝐵)
9 eqid 2735 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 6, 7, 8, 9isinv 17773 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
11 eqid 2735 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
124, 1, 3, 7, 8, 11, 9rngcsectALTV 48250 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
13 df-3an 1088 . . . . 5 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
1412, 13bitrdi 287 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
15 eqid 2735 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
164, 1, 3, 8, 7, 15, 9rngcsectALTV 48250 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺 ∈ (𝑌 RngHom 𝑋) ∧ 𝐹 ∈ (𝑋 RngHom 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
17 3ancoma 1097 . . . . . 6 ((𝐺 ∈ (𝑌 RngHom 𝑋) ∧ 𝐹 ∈ (𝑋 RngHom 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
18 df-3an 1088 . . . . . 6 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
1917, 18bitri 275 . . . . 5 ((𝐺 ∈ (𝑌 RngHom 𝑋) ∧ 𝐹 ∈ (𝑋 RngHom 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
2016, 19bitrdi 287 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2114, 20anbi12d 632 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
22 anandi 676 . . 3 ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2321, 22bitrdi 287 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
24 simplrl 776 . . . . . 6 (((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → 𝐹 ∈ (𝑋 RngHom 𝑌))
2524adantl 481 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → 𝐹 ∈ (𝑋 RngHom 𝑌))
2611, 15rnghmf 20408 . . . . . . . . . 10 (𝐹 ∈ (𝑋 RngHom 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
2715, 11rnghmf 20408 . . . . . . . . . 10 (𝐺 ∈ (𝑌 RngHom 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
2826, 27anim12i 613 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
2928ad2antlr 727 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
30 simpr 484 . . . . . . . . 9 ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
3130adantl 481 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
32 simpr 484 . . . . . . . . 9 (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3332ad2antrl 728 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3429, 31, 33jca32 515 . . . . . . 7 (((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
3534adantl 481 . . . . . 6 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
36 fcof1o 7289 . . . . . . 7 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺))
37 eqcom 2742 . . . . . . . 8 (𝐹 = 𝐺𝐺 = 𝐹)
3837anbi2i 623 . . . . . . 7 ((𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺) ↔ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
3936, 38sylib 218 . . . . . 6 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
4035, 39syl 17 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
41 anass 468 . . . . 5 (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹)))
4225, 40, 41sylanbrc 583 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹))
4311, 15isrngim2 20413 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (𝐹 ∈ (𝑋 RngIso 𝑌) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
447, 8, 43syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋 RngIso 𝑌) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
4544anbi1d 631 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4645adantr 480 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4742, 46mpbird 257 . . 3 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹))
4811, 15rngimrnghm 20415 . . . . . 6 (𝐹 ∈ (𝑋 RngIso 𝑌) → 𝐹 ∈ (𝑋 RngHom 𝑌))
4948ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹 ∈ (𝑋 RngHom 𝑌))
50 isrngim 20405 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → (𝐹 ∈ (𝑋 RngIso 𝑌) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹 ∈ (𝑌 RngHom 𝑋))))
517, 8, 50syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝑋 RngIso 𝑌) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹 ∈ (𝑌 RngHom 𝑋))))
52 eleq1 2822 . . . . . . . . . . . 12 (𝐹 = 𝐺 → (𝐹 ∈ (𝑌 RngHom 𝑋) ↔ 𝐺 ∈ (𝑌 RngHom 𝑋)))
5352eqcoms 2743 . . . . . . . . . . 11 (𝐺 = 𝐹 → (𝐹 ∈ (𝑌 RngHom 𝑋) ↔ 𝐺 ∈ (𝑌 RngHom 𝑋)))
5453anbi2d 630 . . . . . . . . . 10 (𝐺 = 𝐹 → ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹 ∈ (𝑌 RngHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))))
5551, 54sylan9bbr 510 . . . . . . . . 9 ((𝐺 = 𝐹𝜑) → (𝐹 ∈ (𝑋 RngIso 𝑌) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))))
56 simpr 484 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) → 𝐺 ∈ (𝑌 RngHom 𝑋))
5755, 56biimtrdi 253 . . . . . . . 8 ((𝐺 = 𝐹𝜑) → (𝐹 ∈ (𝑋 RngIso 𝑌) → 𝐺 ∈ (𝑌 RngHom 𝑋)))
5857com12 32 . . . . . . 7 (𝐹 ∈ (𝑋 RngIso 𝑌) → ((𝐺 = 𝐹𝜑) → 𝐺 ∈ (𝑌 RngHom 𝑋)))
5958expdimp 452 . . . . . 6 ((𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹) → (𝜑𝐺 ∈ (𝑌 RngHom 𝑋)))
6059impcom 407 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → 𝐺 ∈ (𝑌 RngHom 𝑋))
61 coeq1 5837 . . . . . . 7 (𝐺 = 𝐹 → (𝐺𝐹) = (𝐹𝐹))
6261ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
6311, 15rngimf1o 20414 . . . . . . . 8 (𝐹 ∈ (𝑋 RngIso 𝑌) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
6463ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
65 f1ococnv1 6847 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6664, 65syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6762, 66eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
6849, 60, 67jca31 514 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
6951biimpcd 249 . . . . . . 7 (𝐹 ∈ (𝑋 RngIso 𝑌) → (𝜑 → (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹 ∈ (𝑌 RngHom 𝑋))))
7069adantr 480 . . . . . 6 ((𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹) → (𝜑 → (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹 ∈ (𝑌 RngHom 𝑋))))
7170impcom 407 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹 ∈ (𝑌 RngHom 𝑋)))
72 eleq1 2822 . . . . . . 7 (𝐺 = 𝐹 → (𝐺 ∈ (𝑌 RngHom 𝑋) ↔ 𝐹 ∈ (𝑌 RngHom 𝑋)))
7372ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺 ∈ (𝑌 RngHom 𝑋) ↔ 𝐹 ∈ (𝑌 RngHom 𝑋)))
7473anbi2d 630 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐹 ∈ (𝑌 RngHom 𝑋))))
7571, 74mpbird 257 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)))
76 coeq2 5838 . . . . . . 7 (𝐺 = 𝐹 → (𝐹𝐺) = (𝐹𝐹))
7776ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
78 f1ococnv2 6845 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
7964, 78syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
8077, 79eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
8175, 67, 80jca31 514 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
8268, 75, 81jca31 514 . . 3 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)) → ((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
8347, 82impbida 800 . 2 (𝜑 → (((((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)))
8410, 23, 833bitrd 305 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119   I cid 5547  ccnv 5653  cres 5656  ccom 5658  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Basecbs 17228  Catccat 17676  Sectcsect 17757  Invcinv 17758   RngHom crnghm 20394   RngIso crngim 20395  RngCatALTVcrngcALTV 48238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-hom 17295  df-cco 17296  df-0g 17455  df-cat 17680  df-cid 17681  df-sect 17760  df-inv 17761  df-mgm 18618  df-mgmhm 18670  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-ghm 19196  df-abl 19764  df-mgp 20101  df-rng 20113  df-rnghm 20396  df-rngim 20397  df-rngcALTV 48239
This theorem is referenced by:  rngcisoALTV  48252
  Copyright terms: Public domain W3C validator