Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcinvALTV Structured version   Visualization version   GIF version

Theorem rngcinvALTV 45503
Description: An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcsectALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcsectALTV.b 𝐵 = (Base‘𝐶)
rngcsectALTV.u (𝜑𝑈𝑉)
rngcsectALTV.x (𝜑𝑋𝐵)
rngcsectALTV.y (𝜑𝑌𝐵)
rngcinvALTV.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
rngcinvALTV (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))

Proof of Theorem rngcinvALTV
StepHypRef Expression
1 rngcsectALTV.b . . 3 𝐵 = (Base‘𝐶)
2 rngcinvALTV.n . . 3 𝑁 = (Inv‘𝐶)
3 rngcsectALTV.u . . . 4 (𝜑𝑈𝑉)
4 rngcsectALTV.c . . . . 5 𝐶 = (RngCatALTV‘𝑈)
54rngccatALTV 45500 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 rngcsectALTV.x . . 3 (𝜑𝑋𝐵)
8 rngcsectALTV.y . . 3 (𝜑𝑌𝐵)
9 eqid 2739 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 6, 7, 8, 9isinv 17453 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
11 eqid 2739 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
124, 1, 3, 7, 8, 11, 9rngcsectALTV 45502 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
13 df-3an 1087 . . . . 5 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
1412, 13bitrdi 286 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
15 eqid 2739 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
164, 1, 3, 8, 7, 15, 9rngcsectALTV 45502 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
17 3ancoma 1096 . . . . . 6 ((𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
18 df-3an 1087 . . . . . 6 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
1917, 18bitri 274 . . . . 5 ((𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
2016, 19bitrdi 286 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2114, 20anbi12d 630 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
22 anandi 672 . . 3 ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2321, 22bitrdi 286 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
24 simplrl 773 . . . . . 6 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
2524adantl 481 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
2611, 15rnghmf 45409 . . . . . . . . . 10 (𝐹 ∈ (𝑋 RngHomo 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
2715, 11rnghmf 45409 . . . . . . . . . 10 (𝐺 ∈ (𝑌 RngHomo 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
2826, 27anim12i 612 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
2928ad2antlr 723 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
30 simpr 484 . . . . . . . . 9 ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
3130adantl 481 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
32 simpr 484 . . . . . . . . 9 (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3332ad2antrl 724 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3429, 31, 33jca32 515 . . . . . . 7 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
3534adantl 481 . . . . . 6 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
36 fcof1o 7161 . . . . . . 7 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺))
37 eqcom 2746 . . . . . . . 8 (𝐹 = 𝐺𝐺 = 𝐹)
3837anbi2i 622 . . . . . . 7 ((𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺) ↔ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
3936, 38sylib 217 . . . . . 6 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
4035, 39syl 17 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
41 anass 468 . . . . 5 (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹)))
4225, 40, 41sylanbrc 582 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹))
4311, 15isrngim 45414 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
447, 8, 43syl2anc 583 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
4544anbi1d 629 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4645adantr 480 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4742, 46mpbird 256 . . 3 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹))
4811, 15rngimrnghm 45416 . . . . . 6 (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
4948ad2antrl 724 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
50 isrngisom 45406 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
517, 8, 50syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
52 eleq1 2827 . . . . . . . . . . . 12 (𝐹 = 𝐺 → (𝐹 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5352eqcoms 2747 . . . . . . . . . . 11 (𝐺 = 𝐹 → (𝐹 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5453anbi2d 628 . . . . . . . . . 10 (𝐺 = 𝐹 → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))))
5551, 54sylan9bbr 510 . . . . . . . . 9 ((𝐺 = 𝐹𝜑) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))))
56 simpr 484 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → 𝐺 ∈ (𝑌 RngHomo 𝑋))
5755, 56syl6bi 252 . . . . . . . 8 ((𝐺 = 𝐹𝜑) → (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5857com12 32 . . . . . . 7 (𝐹 ∈ (𝑋 RngIsom 𝑌) → ((𝐺 = 𝐹𝜑) → 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5958expdimp 452 . . . . . 6 ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) → (𝜑𝐺 ∈ (𝑌 RngHomo 𝑋)))
6059impcom 407 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → 𝐺 ∈ (𝑌 RngHomo 𝑋))
61 coeq1 5763 . . . . . . 7 (𝐺 = 𝐹 → (𝐺𝐹) = (𝐹𝐹))
6261ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
6311, 15rngimf1o 45415 . . . . . . . 8 (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
6463ad2antrl 724 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
65 f1ococnv1 6740 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6664, 65syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6762, 66eqtrd 2779 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
6849, 60, 67jca31 514 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
6951biimpcd 248 . . . . . . 7 (𝐹 ∈ (𝑋 RngIsom 𝑌) → (𝜑 → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
7069adantr 480 . . . . . 6 ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) → (𝜑 → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
7170impcom 407 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋)))
72 eleq1 2827 . . . . . . 7 (𝐺 = 𝐹 → (𝐺 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐹 ∈ (𝑌 RngHomo 𝑋)))
7372ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐹 ∈ (𝑌 RngHomo 𝑋)))
7473anbi2d 628 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
7571, 74mpbird 256 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
76 coeq2 5764 . . . . . . 7 (𝐺 = 𝐹 → (𝐹𝐺) = (𝐹𝐹))
7776ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
78 f1ococnv2 6738 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
7964, 78syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
8077, 79eqtrd 2779 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
8175, 67, 80jca31 514 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
8268, 75, 81jca31 514 . . 3 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
8347, 82impbida 797 . 2 (𝜑 → (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))
8410, 23, 833bitrd 304 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078   I cid 5487  ccnv 5587  cres 5590  ccom 5592  wf 6426  1-1-ontowf1o 6429  cfv 6430  (class class class)co 7268  Basecbs 16893  Catccat 17354  Sectcsect 17437  Invcinv 17438   RngHomo crngh 45395   RngIsom crngs 45396  RngCatALTVcrngcALTV 45468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-hom 16967  df-cco 16968  df-0g 17133  df-cat 17358  df-cid 17359  df-sect 17440  df-inv 17441  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-mhm 18411  df-grp 18561  df-ghm 18813  df-abl 19370  df-mgp 19702  df-mgmhm 45285  df-rng0 45385  df-rnghomo 45397  df-rngisom 45398  df-rngcALTV 45470
This theorem is referenced by:  rngcisoALTV  45504
  Copyright terms: Public domain W3C validator