Proof of Theorem fucinv
Step | Hyp | Ref
| Expression |
1 | | fuciso.q |
. . . 4
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
2 | | fuciso.b |
. . . 4
⊢ 𝐵 = (Base‘𝐶) |
3 | | fuciso.n |
. . . 4
⊢ 𝑁 = (𝐶 Nat 𝐷) |
4 | | fuciso.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
5 | | fuciso.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
6 | | eqid 2738 |
. . . 4
⊢
(Sect‘𝑄) =
(Sect‘𝑄) |
7 | | eqid 2738 |
. . . 4
⊢
(Sect‘𝐷) =
(Sect‘𝐷) |
8 | 1, 2, 3, 4, 5, 6, 7 | fucsect 17606 |
. . 3
⊢ (𝜑 → (𝑈(𝐹(Sect‘𝑄)𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)))) |
9 | 1, 2, 3, 5, 4, 6, 7 | fucsect 17606 |
. . 3
⊢ (𝜑 → (𝑉(𝐺(Sect‘𝑄)𝐹)𝑈 ↔ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)))) |
10 | 8, 9 | anbi12d 630 |
. 2
⊢ (𝜑 → ((𝑈(𝐹(Sect‘𝑄)𝐺)𝑉 ∧ 𝑉(𝐺(Sect‘𝑄)𝐹)𝑈) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))))) |
11 | 1 | fucbas 17593 |
. . 3
⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
12 | | fucinv.i |
. . 3
⊢ 𝐼 = (Inv‘𝑄) |
13 | | funcrcl 17494 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
14 | 4, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
15 | 14 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
16 | 14 | simprd 495 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
17 | 1, 15, 16 | fuccat 17604 |
. . 3
⊢ (𝜑 → 𝑄 ∈ Cat) |
18 | 11, 12, 17, 4, 5, 6 | isinv 17389 |
. 2
⊢ (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈(𝐹(Sect‘𝑄)𝐺)𝑉 ∧ 𝑉(𝐺(Sect‘𝑄)𝐹)𝑈))) |
19 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
20 | | fucinv.j |
. . . . . . 7
⊢ 𝐽 = (Inv‘𝐷) |
21 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ Cat) |
22 | | relfunc 17493 |
. . . . . . . . . 10
⊢ Rel
(𝐶 Func 𝐷) |
23 | | 1st2ndbr 7856 |
. . . . . . . . . 10
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
24 | 22, 4, 23 | sylancr 586 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
25 | 2, 19, 24 | funcf1 17497 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹):𝐵⟶(Base‘𝐷)) |
26 | 25 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
27 | | 1st2ndbr 7856 |
. . . . . . . . . 10
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
28 | 22, 5, 27 | sylancr 586 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
29 | 2, 19, 28 | funcf1 17497 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐺):𝐵⟶(Base‘𝐷)) |
30 | 29 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) |
31 | 19, 20, 21, 26, 30, 7 | isinv 17389 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ↔ ((𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ∧ (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)))) |
32 | 31 | ralbidva 3119 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ∧ (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)))) |
33 | | r19.26 3094 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ((𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ∧ (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) ↔ (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) |
34 | 32, 33 | bitrdi 286 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ↔ (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)))) |
35 | 34 | anbi2d 628 |
. . 3
⊢ (𝜑 → (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))))) |
36 | | df-3an 1087 |
. . 3
⊢ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))(𝑉‘𝑥))) |
37 | | df-3an 1087 |
. . . . 5
⊢ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥))) |
38 | | 3ancoma 1096 |
. . . . . 6
⊢ ((𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) |
39 | | df-3an 1087 |
. . . . . 6
⊢ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) |
40 | 38, 39 | bitri 274 |
. . . . 5
⊢ ((𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) |
41 | 37, 40 | anbi12i 626 |
. . . 4
⊢ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) ↔ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ∧ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)))) |
42 | | anandi 672 |
. . . 4
⊢ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) ↔ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ∧ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)))) |
43 | 41, 42 | bitr4i 277 |
. . 3
⊢ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥)))) |
44 | 35, 36, 43 | 3bitr4g 313 |
. 2
⊢ (𝜑 → ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)(Sect‘𝐷)((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝑉‘𝑥)(((1st ‘𝐺)‘𝑥)(Sect‘𝐷)((1st ‘𝐹)‘𝑥))(𝑈‘𝑥))))) |
45 | 10, 18, 44 | 3bitr4d 310 |
1
⊢ (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)))) |