MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucinv Structured version   Visualization version   GIF version

Theorem fucinv 17930
Description: Two natural transformations are inverses of each other iff all the components are inverse. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucinv.i 𝐼 = (Inv‘𝑄)
fucinv.j 𝐽 = (Inv‘𝐷)
Assertion
Ref Expression
fucinv (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑁   𝑥,𝑉   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈

Proof of Theorem fucinv
StepHypRef Expression
1 fuciso.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
2 fuciso.b . . . 4 𝐵 = (Base‘𝐶)
3 fuciso.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
4 fuciso.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 fuciso.g . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
6 eqid 2724 . . . 4 (Sect‘𝑄) = (Sect‘𝑄)
7 eqid 2724 . . . 4 (Sect‘𝐷) = (Sect‘𝐷)
81, 2, 3, 4, 5, 6, 7fucsect 17929 . . 3 (𝜑 → (𝑈(𝐹(Sect‘𝑄)𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥))))
91, 2, 3, 5, 4, 6, 7fucsect 17929 . . 3 (𝜑 → (𝑉(𝐺(Sect‘𝑄)𝐹)𝑈 ↔ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
108, 9anbi12d 630 . 2 (𝜑 → ((𝑈(𝐹(Sect‘𝑄)𝐺)𝑉𝑉(𝐺(Sect‘𝑄)𝐹)𝑈) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))))
111fucbas 17916 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
12 fucinv.i . . 3 𝐼 = (Inv‘𝑄)
13 funcrcl 17814 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
144, 13syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1514simpld 494 . . . 4 (𝜑𝐶 ∈ Cat)
1614simprd 495 . . . 4 (𝜑𝐷 ∈ Cat)
171, 15, 16fuccat 17927 . . 3 (𝜑𝑄 ∈ Cat)
1811, 12, 17, 4, 5, 6isinv 17708 . 2 (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈(𝐹(Sect‘𝑄)𝐺)𝑉𝑉(𝐺(Sect‘𝑄)𝐹)𝑈)))
19 eqid 2724 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
20 fucinv.j . . . . . . 7 𝐽 = (Inv‘𝐷)
2116adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐷 ∈ Cat)
22 relfunc 17813 . . . . . . . . . 10 Rel (𝐶 Func 𝐷)
23 1st2ndbr 8022 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2422, 4, 23sylancr 586 . . . . . . . . 9 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
252, 19, 24funcf1 17817 . . . . . . . 8 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
2625ffvelcdmda 7077 . . . . . . 7 ((𝜑𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
27 1st2ndbr 8022 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2822, 5, 27sylancr 586 . . . . . . . . 9 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
292, 19, 28funcf1 17817 . . . . . . . 8 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
3029ffvelcdmda 7077 . . . . . . 7 ((𝜑𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
3119, 20, 21, 26, 30, 7isinv 17708 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ((𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
3231ralbidva 3167 . . . . 5 (𝜑 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ∀𝑥𝐵 ((𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
33 r19.26 3103 . . . . 5 (∀𝑥𝐵 ((𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
3432, 33bitrdi 287 . . . 4 (𝜑 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥) ↔ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
3534anbi2d 628 . . 3 (𝜑 → (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))))
36 df-3an 1086 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)))
37 df-3an 1086 . . . . 5 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)))
38 3ancoma 1095 . . . . . 6 ((𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
39 df-3an 1086 . . . . . 6 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
4038, 39bitri 275 . . . . 5 ((𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
4137, 40anbi12i 626 . . . 4 (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) ↔ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
42 anandi 673 . . . 4 (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) ↔ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
4341, 42bitr4i 278 . . 3 (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
4435, 36, 433bitr4g 314 . 2 (𝜑 → ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))))
4510, 18, 443bitr4d 311 1 (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053   class class class wbr 5139  Rel wrel 5672  cfv 6534  (class class class)co 7402  1st c1st 7967  2nd c2nd 7968  Basecbs 17145  Catccat 17609  Sectcsect 17692  Invcinv 17693   Func cfunc 17805   Nat cnat 17896   FuncCat cfuc 17897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-fz 13483  df-struct 17081  df-slot 17116  df-ndx 17128  df-base 17146  df-hom 17222  df-cco 17223  df-cat 17613  df-cid 17614  df-sect 17695  df-inv 17696  df-func 17809  df-nat 17898  df-fuc 17899
This theorem is referenced by:  invfuc  17931  fuciso  17932
  Copyright terms: Public domain W3C validator