MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucinv Structured version   Visualization version   GIF version

Theorem fucinv 17246
Description: Two natural transformations are inverses of each other iff all the components are inverse. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucinv.i 𝐼 = (Inv‘𝑄)
fucinv.j 𝐽 = (Inv‘𝐷)
Assertion
Ref Expression
fucinv (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑁   𝑥,𝑉   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈

Proof of Theorem fucinv
StepHypRef Expression
1 fuciso.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
2 fuciso.b . . . 4 𝐵 = (Base‘𝐶)
3 fuciso.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
4 fuciso.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 fuciso.g . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
6 eqid 2824 . . . 4 (Sect‘𝑄) = (Sect‘𝑄)
7 eqid 2824 . . . 4 (Sect‘𝐷) = (Sect‘𝐷)
81, 2, 3, 4, 5, 6, 7fucsect 17245 . . 3 (𝜑 → (𝑈(𝐹(Sect‘𝑄)𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥))))
91, 2, 3, 5, 4, 6, 7fucsect 17245 . . 3 (𝜑 → (𝑉(𝐺(Sect‘𝑄)𝐹)𝑈 ↔ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
108, 9anbi12d 632 . 2 (𝜑 → ((𝑈(𝐹(Sect‘𝑄)𝐺)𝑉𝑉(𝐺(Sect‘𝑄)𝐹)𝑈) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))))
111fucbas 17233 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
12 fucinv.i . . 3 𝐼 = (Inv‘𝑄)
13 funcrcl 17136 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
144, 13syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1514simpld 497 . . . 4 (𝜑𝐶 ∈ Cat)
1614simprd 498 . . . 4 (𝜑𝐷 ∈ Cat)
171, 15, 16fuccat 17243 . . 3 (𝜑𝑄 ∈ Cat)
1811, 12, 17, 4, 5, 6isinv 17033 . 2 (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈(𝐹(Sect‘𝑄)𝐺)𝑉𝑉(𝐺(Sect‘𝑄)𝐹)𝑈)))
19 eqid 2824 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
20 fucinv.j . . . . . . 7 𝐽 = (Inv‘𝐷)
2116adantr 483 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐷 ∈ Cat)
22 relfunc 17135 . . . . . . . . . 10 Rel (𝐶 Func 𝐷)
23 1st2ndbr 7744 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2422, 4, 23sylancr 589 . . . . . . . . 9 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
252, 19, 24funcf1 17139 . . . . . . . 8 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
2625ffvelrnda 6854 . . . . . . 7 ((𝜑𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
27 1st2ndbr 7744 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2822, 5, 27sylancr 589 . . . . . . . . 9 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
292, 19, 28funcf1 17139 . . . . . . . 8 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
3029ffvelrnda 6854 . . . . . . 7 ((𝜑𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
3119, 20, 21, 26, 30, 7isinv 17033 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ((𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
3231ralbidva 3199 . . . . 5 (𝜑 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ∀𝑥𝐵 ((𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
33 r19.26 3173 . . . . 5 (∀𝑥𝐵 ((𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
3432, 33syl6bb 289 . . . 4 (𝜑 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥) ↔ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
3534anbi2d 630 . . 3 (𝜑 → (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))))
36 df-3an 1085 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)))
37 df-3an 1085 . . . . 5 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)))
38 3ancoma 1094 . . . . . 6 ((𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
39 df-3an 1085 . . . . . 6 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
4038, 39bitri 277 . . . . 5 ((𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
4137, 40anbi12i 628 . . . 4 (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) ↔ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
42 anandi 674 . . . 4 (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) ↔ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
4341, 42bitr4i 280 . . 3 (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
4435, 36, 433bitr4g 316 . 2 (𝜑 → ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))))
4510, 18, 443bitr4d 313 1 (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141   class class class wbr 5069  Rel wrel 5563  cfv 6358  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  Basecbs 16486  Catccat 16938  Sectcsect 17017  Invcinv 17018   Func cfunc 17127   Nat cnat 17214   FuncCat cfuc 17215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-hom 16592  df-cco 16593  df-cat 16942  df-cid 16943  df-sect 17020  df-inv 17021  df-func 17131  df-nat 17216  df-fuc 17217
This theorem is referenced by:  invfuc  17247  fuciso  17248
  Copyright terms: Public domain W3C validator