MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucinv Structured version   Visualization version   GIF version

Theorem fucinv 17883
Description: Two natural transformations are inverses of each other iff all the components are inverse. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucinv.i 𝐼 = (Inv‘𝑄)
fucinv.j 𝐽 = (Inv‘𝐷)
Assertion
Ref Expression
fucinv (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑁   𝑥,𝑉   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈

Proof of Theorem fucinv
StepHypRef Expression
1 fuciso.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
2 fuciso.b . . . 4 𝐵 = (Base‘𝐶)
3 fuciso.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
4 fuciso.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 fuciso.g . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
6 eqid 2729 . . . 4 (Sect‘𝑄) = (Sect‘𝑄)
7 eqid 2729 . . . 4 (Sect‘𝐷) = (Sect‘𝐷)
81, 2, 3, 4, 5, 6, 7fucsect 17882 . . 3 (𝜑 → (𝑈(𝐹(Sect‘𝑄)𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥))))
91, 2, 3, 5, 4, 6, 7fucsect 17882 . . 3 (𝜑 → (𝑉(𝐺(Sect‘𝑄)𝐹)𝑈 ↔ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
108, 9anbi12d 632 . 2 (𝜑 → ((𝑈(𝐹(Sect‘𝑄)𝐺)𝑉𝑉(𝐺(Sect‘𝑄)𝐹)𝑈) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))))
111fucbas 17870 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
12 fucinv.i . . 3 𝐼 = (Inv‘𝑄)
13 funcrcl 17770 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
144, 13syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1514simpld 494 . . . 4 (𝜑𝐶 ∈ Cat)
1614simprd 495 . . . 4 (𝜑𝐷 ∈ Cat)
171, 15, 16fuccat 17880 . . 3 (𝜑𝑄 ∈ Cat)
1811, 12, 17, 4, 5, 6isinv 17667 . 2 (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈(𝐹(Sect‘𝑄)𝐺)𝑉𝑉(𝐺(Sect‘𝑄)𝐹)𝑈)))
19 eqid 2729 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
20 fucinv.j . . . . . . 7 𝐽 = (Inv‘𝐷)
2116adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐷 ∈ Cat)
22 relfunc 17769 . . . . . . . . . 10 Rel (𝐶 Func 𝐷)
23 1st2ndbr 7977 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2422, 4, 23sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
252, 19, 24funcf1 17773 . . . . . . . 8 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
2625ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
27 1st2ndbr 7977 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2822, 5, 27sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
292, 19, 28funcf1 17773 . . . . . . . 8 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
3029ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
3119, 20, 21, 26, 30, 7isinv 17667 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ((𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
3231ralbidva 3150 . . . . 5 (𝜑 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥) ↔ ∀𝑥𝐵 ((𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
33 r19.26 3089 . . . . 5 (∀𝑥𝐵 ((𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
3432, 33bitrdi 287 . . . 4 (𝜑 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥) ↔ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
3534anbi2d 630 . . 3 (𝜑 → (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))))
36 df-3an 1088 . . 3 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)))
37 df-3an 1088 . . . . 5 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)))
38 3ancoma 1097 . . . . . 6 ((𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
39 df-3an 1088 . . . . . 6 ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
4038, 39bitri 275 . . . . 5 ((𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))
4137, 40anbi12i 628 . . . 4 (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) ↔ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
42 anandi 676 . . . 4 (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) ↔ (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
4341, 42bitr4i 278 . . 3 (((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹)) ∧ (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥))))
4435, 36, 433bitr4g 314 . 2 (𝜑 → ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥)) ↔ ((𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)(Sect‘𝐷)((1st𝐺)‘𝑥))(𝑉𝑥)) ∧ (𝑉 ∈ (𝐺𝑁𝐹) ∧ 𝑈 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝑉𝑥)(((1st𝐺)‘𝑥)(Sect‘𝐷)((1st𝐹)‘𝑥))(𝑈𝑥)))))
4510, 18, 443bitr4d 311 1 (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))(𝑉𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  Rel wrel 5624  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  Basecbs 17120  Catccat 17570  Sectcsect 17651  Invcinv 17652   Func cfunc 17761   Nat cnat 17851   FuncCat cfuc 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-sect 17654  df-inv 17655  df-func 17765  df-nat 17853  df-fuc 17854
This theorem is referenced by:  invfuc  17884  fuciso  17885
  Copyright terms: Public domain W3C validator