MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzmlbp Structured version   Visualization version   GIF version

Theorem elfzmlbp 13608
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
Assertion
Ref Expression
elfzmlbp ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem elfzmlbp
StepHypRef Expression
1 elfz2 13487 . . . 4 (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))))
2 znn0sub 12605 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
32adantr 481 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
43biimpcd 248 . . . . . . . . . . . 12 (𝑀𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
54adantr 481 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
65impcom 408 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ∈ ℕ0)
7 zre 12558 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantr 481 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑀 ∈ ℝ)
98adantr 481 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
10 zre 12558 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1110adantl 482 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
1211adantr 481 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ)
13 zaddcl 12598 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1413adantlr 713 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1514zred 12662 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℝ)
16 letr 11304 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
179, 12, 15, 16syl3anc 1371 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
18 zre 12558 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
19 addge01 11720 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
208, 18, 19syl2an 596 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
21 elnn0z 12567 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2221simplbi2 501 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2322adantl 482 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2420, 23sylbird 259 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑀 + 𝑁) → 𝑁 ∈ ℕ0))
2517, 24syld 47 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑁 ∈ ℕ0))
2625imp 407 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → 𝑁 ∈ ℕ0)
27 df-3an 1089 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ))
28 3ancoma 1098 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2927, 28bitr3i 276 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3010, 7, 183anim123i 1151 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
3129, 30sylbi 216 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
32 lesubadd2 11683 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3331, 32syl 17 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3433biimprcd 249 . . . . . . . . . . . 12 (𝐾 ≤ (𝑀 + 𝑁) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3534adantl 482 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3635impcom 408 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ≤ 𝑁)
376, 26, 363jca 1128 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
3837exp31 420 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
3938com23 86 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
40393adant2 1131 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
4140imp 407 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4241com12 32 . . . 4 (𝑁 ∈ ℤ → (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
431, 42biimtrid 241 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4443imp 407 . 2 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
45 elfz2nn0 13588 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
4644, 45sylibr 233 1 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106   class class class wbr 5147  (class class class)co 7405  cr 11105  0cc0 11106   + caddc 11109  cle 11245  cmin 11440  0cn0 12468  cz 12554  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481
This theorem is referenced by:  swrdccatin2  14675  pfxccatin12  14679
  Copyright terms: Public domain W3C validator