MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzmlbp Structured version   Visualization version   GIF version

Theorem elfzmlbp 13012
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
Assertion
Ref Expression
elfzmlbp ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem elfzmlbp
StepHypRef Expression
1 elfz2 12893 . . . 4 (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))))
2 znn0sub 12023 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
32adantr 483 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
43biimpcd 251 . . . . . . . . . . . 12 (𝑀𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
54adantr 483 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
65impcom 410 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ∈ ℕ0)
7 zre 11979 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantr 483 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑀 ∈ ℝ)
98adantr 483 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
10 zre 11979 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1110adantl 484 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
1211adantr 483 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ)
13 zaddcl 12016 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1413adantlr 713 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1514zred 12081 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℝ)
16 letr 10728 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
179, 12, 15, 16syl3anc 1367 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
18 zre 11979 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
19 addge01 11144 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
208, 18, 19syl2an 597 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
21 elnn0z 11988 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2221simplbi2 503 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2322adantl 484 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2420, 23sylbird 262 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑀 + 𝑁) → 𝑁 ∈ ℕ0))
2517, 24syld 47 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑁 ∈ ℕ0))
2625imp 409 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → 𝑁 ∈ ℕ0)
27 df-3an 1085 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ))
28 3ancoma 1094 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2927, 28bitr3i 279 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3010, 7, 183anim123i 1147 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
3129, 30sylbi 219 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
32 lesubadd2 11107 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3331, 32syl 17 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3433biimprcd 252 . . . . . . . . . . . 12 (𝐾 ≤ (𝑀 + 𝑁) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3534adantl 484 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3635impcom 410 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ≤ 𝑁)
376, 26, 363jca 1124 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
3837exp31 422 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
3938com23 86 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
40393adant2 1127 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
4140imp 409 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4241com12 32 . . . 4 (𝑁 ∈ ℤ → (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
431, 42syl5bi 244 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4443imp 409 . 2 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
45 elfz2nn0 12992 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
4644, 45sylibr 236 1 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2110   class class class wbr 5058  (class class class)co 7150  cr 10530  0cc0 10531   + caddc 10534  cle 10670  cmin 10864  0cn0 11891  cz 11975  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887
This theorem is referenced by:  swrdccatin2  14085  pfxccatin12  14089
  Copyright terms: Public domain W3C validator