MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzmlbp Structured version   Visualization version   GIF version

Theorem elfzmlbp 13607
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
Assertion
Ref Expression
elfzmlbp ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem elfzmlbp
StepHypRef Expression
1 elfz2 13482 . . . 4 (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))))
2 znn0sub 12587 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
32adantr 480 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
43biimpcd 249 . . . . . . . . . . . 12 (𝑀𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
54adantr 480 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℕ0))
65impcom 407 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ∈ ℕ0)
7 zre 12540 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantr 480 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑀 ∈ ℝ)
98adantr 480 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
10 zre 12540 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1110adantl 481 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
1211adantr 480 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ)
13 zaddcl 12580 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1413adantlr 715 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1514zred 12645 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℝ)
16 letr 11275 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
179, 12, 15, 16syl3anc 1373 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑀 ≤ (𝑀 + 𝑁)))
18 zre 12540 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
19 addge01 11695 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
208, 18, 19syl2an 596 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
21 elnn0z 12549 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2221simplbi2 500 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2322adantl 481 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2420, 23sylbird 260 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑀 + 𝑁) → 𝑁 ∈ ℕ0))
2517, 24syld 47 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → 𝑁 ∈ ℕ0))
2625imp 406 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → 𝑁 ∈ ℕ0)
27 df-3an 1088 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ))
28 3ancoma 1097 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2927, 28bitr3i 277 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3010, 7, 183anim123i 1151 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
3129, 30sylbi 217 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
32 lesubadd2 11658 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3331, 32syl 17 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀) ≤ 𝑁𝐾 ≤ (𝑀 + 𝑁)))
3433biimprcd 250 . . . . . . . . . . . 12 (𝐾 ≤ (𝑀 + 𝑁) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3534adantl 481 . . . . . . . . . . 11 ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ≤ 𝑁))
3635impcom 407 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝐾𝑀) ≤ 𝑁)
376, 26, 363jca 1128 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
3837exp31 419 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
3938com23 86 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
40393adant2 1131 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝐾 ≤ (𝑀 + 𝑁)) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))))
4140imp 406 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → (𝑁 ∈ ℤ → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4241com12 32 . . . 4 (𝑁 ∈ ℤ → (((𝑀 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾 ≤ (𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
431, 42biimtrid 242 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (𝑀...(𝑀 + 𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁)))
4443imp 406 . 2 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
45 elfz2nn0 13586 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
4644, 45sylibr 234 1 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075   + caddc 11078  cle 11216  cmin 11412  0cn0 12449  cz 12536  ...cfz 13475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476
This theorem is referenced by:  swrdccatin2  14701  pfxccatin12  14705
  Copyright terms: Public domain W3C validator