Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2ltc Structured version   Visualization version   GIF version

Theorem dp2ltc 31785
Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dp2lt.a 𝐴 ∈ ℕ0
dp2lt.b 𝐵 ∈ ℝ+
dp2ltc.c 𝐶 ∈ ℕ0
dp2ltc.d 𝐷 ∈ ℝ+
dp2ltc.s 𝐵 < 10
dp2ltc.l 𝐴 < 𝐶
Assertion
Ref Expression
dp2ltc 𝐴𝐵 < 𝐶𝐷

Proof of Theorem dp2ltc
StepHypRef Expression
1 dp2ltc.s . . . . . 6 𝐵 < 10
2 rpssre 12929 . . . . . . . 8 + ⊆ ℝ
3 dp2lt.b . . . . . . . 8 𝐵 ∈ ℝ+
42, 3sselii 3946 . . . . . . 7 𝐵 ∈ ℝ
5 10re 12644 . . . . . . . 8 10 ∈ ℝ
6 10pos 12642 . . . . . . . 8 0 < 10
7 elrp 12924 . . . . . . . 8 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
85, 6, 7mpbir2an 710 . . . . . . 7 10 ∈ ℝ+
9 divlt1lt 12991 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ+) → ((𝐵 / 10) < 1 ↔ 𝐵 < 10))
104, 8, 9mp2an 691 . . . . . 6 ((𝐵 / 10) < 1 ↔ 𝐵 < 10)
111, 10mpbir 230 . . . . 5 (𝐵 / 10) < 1
125, 6gt0ne0ii 11698 . . . . . . 7 10 ≠ 0
134, 5, 12redivcli 11929 . . . . . 6 (𝐵 / 10) ∈ ℝ
14 1re 11162 . . . . . 6 1 ∈ ℝ
15 dp2lt.a . . . . . . 7 𝐴 ∈ ℕ0
1615nn0rei 12431 . . . . . 6 𝐴 ∈ ℝ
17 ltadd2 11266 . . . . . 6 (((𝐵 / 10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1)))
1813, 14, 16, 17mp3an 1462 . . . . 5 ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1))
1911, 18mpbi 229 . . . 4 (𝐴 + (𝐵 / 10)) < (𝐴 + 1)
20 dp2ltc.l . . . . 5 𝐴 < 𝐶
2115nn0zi 12535 . . . . . 6 𝐴 ∈ ℤ
22 dp2ltc.c . . . . . . 7 𝐶 ∈ ℕ0
2322nn0zi 12535 . . . . . 6 𝐶 ∈ ℤ
24 zltp1le 12560 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
2521, 23, 24mp2an 691 . . . . 5 (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)
2620, 25mpbi 229 . . . 4 (𝐴 + 1) ≤ 𝐶
2716, 13readdcli 11177 . . . . 5 (𝐴 + (𝐵 / 10)) ∈ ℝ
2816, 14readdcli 11177 . . . . 5 (𝐴 + 1) ∈ ℝ
2922nn0rei 12431 . . . . 5 𝐶 ∈ ℝ
3027, 28, 29ltletri 11290 . . . 4 (((𝐴 + (𝐵 / 10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / 10)) < 𝐶)
3119, 26, 30mp2an 691 . . 3 (𝐴 + (𝐵 / 10)) < 𝐶
32 dp2ltc.d . . . . . 6 𝐷 ∈ ℝ+
3332, 8pm3.2i 472 . . . . 5 (𝐷 ∈ ℝ+10 ∈ ℝ+)
34 rpdivcl 12947 . . . . 5 ((𝐷 ∈ ℝ+10 ∈ ℝ+) → (𝐷 / 10) ∈ ℝ+)
3533, 34ax-mp 5 . . . 4 (𝐷 / 10) ∈ ℝ+
36 ltaddrp 12959 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐷 / 10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / 10)))
3729, 35, 36mp2an 691 . . 3 𝐶 < (𝐶 + (𝐷 / 10))
382, 32sselii 3946 . . . . . 6 𝐷 ∈ ℝ
3938, 5, 12redivcli 11929 . . . . 5 (𝐷 / 10) ∈ ℝ
4029, 39readdcli 11177 . . . 4 (𝐶 + (𝐷 / 10)) ∈ ℝ
4127, 29, 40lttri 11288 . . 3 (((𝐴 + (𝐵 / 10)) < 𝐶𝐶 < (𝐶 + (𝐷 / 10))) → (𝐴 + (𝐵 / 10)) < (𝐶 + (𝐷 / 10)))
4231, 37, 41mp2an 691 . 2 (𝐴 + (𝐵 / 10)) < (𝐶 + (𝐷 / 10))
43 df-dp2 31770 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
44 df-dp2 31770 . 2 𝐶𝐷 = (𝐶 + (𝐷 / 10))
4542, 43, 443brtr4i 5140 1 𝐴𝐵 < 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2107   class class class wbr 5110  (class class class)co 7362  cr 11057  0cc0 11058  1c1 11059   + caddc 11061   < clt 11196  cle 11197   / cdiv 11819  0cn0 12420  cz 12506  cdc 12625  +crp 12922  cdp2 31769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-rp 12923  df-dp2 31770
This theorem is referenced by:  dpltc  31805
  Copyright terms: Public domain W3C validator