Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2ltc Structured version   Visualization version   GIF version

Theorem dp2ltc 32485
Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dp2lt.a 𝐴 ∈ ℕ0
dp2lt.b 𝐵 ∈ ℝ+
dp2ltc.c 𝐶 ∈ ℕ0
dp2ltc.d 𝐷 ∈ ℝ+
dp2ltc.s 𝐵 < 10
dp2ltc.l 𝐴 < 𝐶
Assertion
Ref Expression
dp2ltc 𝐴𝐵 < 𝐶𝐷

Proof of Theorem dp2ltc
StepHypRef Expression
1 dp2ltc.s . . . . . 6 𝐵 < 10
2 rpssre 12988 . . . . . . . 8 + ⊆ ℝ
3 dp2lt.b . . . . . . . 8 𝐵 ∈ ℝ+
42, 3sselii 3979 . . . . . . 7 𝐵 ∈ ℝ
5 10re 12703 . . . . . . . 8 10 ∈ ℝ
6 10pos 12701 . . . . . . . 8 0 < 10
7 elrp 12983 . . . . . . . 8 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
85, 6, 7mpbir2an 708 . . . . . . 7 10 ∈ ℝ+
9 divlt1lt 13050 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ+) → ((𝐵 / 10) < 1 ↔ 𝐵 < 10))
104, 8, 9mp2an 689 . . . . . 6 ((𝐵 / 10) < 1 ↔ 𝐵 < 10)
111, 10mpbir 230 . . . . 5 (𝐵 / 10) < 1
125, 6gt0ne0ii 11757 . . . . . . 7 10 ≠ 0
134, 5, 12redivcli 11988 . . . . . 6 (𝐵 / 10) ∈ ℝ
14 1re 11221 . . . . . 6 1 ∈ ℝ
15 dp2lt.a . . . . . . 7 𝐴 ∈ ℕ0
1615nn0rei 12490 . . . . . 6 𝐴 ∈ ℝ
17 ltadd2 11325 . . . . . 6 (((𝐵 / 10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1)))
1813, 14, 16, 17mp3an 1460 . . . . 5 ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1))
1911, 18mpbi 229 . . . 4 (𝐴 + (𝐵 / 10)) < (𝐴 + 1)
20 dp2ltc.l . . . . 5 𝐴 < 𝐶
2115nn0zi 12594 . . . . . 6 𝐴 ∈ ℤ
22 dp2ltc.c . . . . . . 7 𝐶 ∈ ℕ0
2322nn0zi 12594 . . . . . 6 𝐶 ∈ ℤ
24 zltp1le 12619 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
2521, 23, 24mp2an 689 . . . . 5 (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)
2620, 25mpbi 229 . . . 4 (𝐴 + 1) ≤ 𝐶
2716, 13readdcli 11236 . . . . 5 (𝐴 + (𝐵 / 10)) ∈ ℝ
2816, 14readdcli 11236 . . . . 5 (𝐴 + 1) ∈ ℝ
2922nn0rei 12490 . . . . 5 𝐶 ∈ ℝ
3027, 28, 29ltletri 11349 . . . 4 (((𝐴 + (𝐵 / 10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / 10)) < 𝐶)
3119, 26, 30mp2an 689 . . 3 (𝐴 + (𝐵 / 10)) < 𝐶
32 dp2ltc.d . . . . . 6 𝐷 ∈ ℝ+
3332, 8pm3.2i 470 . . . . 5 (𝐷 ∈ ℝ+10 ∈ ℝ+)
34 rpdivcl 13006 . . . . 5 ((𝐷 ∈ ℝ+10 ∈ ℝ+) → (𝐷 / 10) ∈ ℝ+)
3533, 34ax-mp 5 . . . 4 (𝐷 / 10) ∈ ℝ+
36 ltaddrp 13018 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐷 / 10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / 10)))
3729, 35, 36mp2an 689 . . 3 𝐶 < (𝐶 + (𝐷 / 10))
382, 32sselii 3979 . . . . . 6 𝐷 ∈ ℝ
3938, 5, 12redivcli 11988 . . . . 5 (𝐷 / 10) ∈ ℝ
4029, 39readdcli 11236 . . . 4 (𝐶 + (𝐷 / 10)) ∈ ℝ
4127, 29, 40lttri 11347 . . 3 (((𝐴 + (𝐵 / 10)) < 𝐶𝐶 < (𝐶 + (𝐷 / 10))) → (𝐴 + (𝐵 / 10)) < (𝐶 + (𝐷 / 10)))
4231, 37, 41mp2an 689 . 2 (𝐴 + (𝐵 / 10)) < (𝐶 + (𝐷 / 10))
43 df-dp2 32470 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
44 df-dp2 32470 . 2 𝐶𝐷 = (𝐶 + (𝐷 / 10))
4542, 43, 443brtr4i 5178 1 𝐴𝐵 < 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2105   class class class wbr 5148  (class class class)co 7412  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   < clt 11255  cle 11256   / cdiv 11878  0cn0 12479  cz 12565  cdc 12684  +crp 12981  cdp2 32469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-rp 12982  df-dp2 32470
This theorem is referenced by:  dpltc  32505
  Copyright terms: Public domain W3C validator