Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2ltc Structured version   Visualization version   GIF version

Theorem dp2ltc 32896
Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dp2lt.a 𝐴 ∈ ℕ0
dp2lt.b 𝐵 ∈ ℝ+
dp2ltc.c 𝐶 ∈ ℕ0
dp2ltc.d 𝐷 ∈ ℝ+
dp2ltc.s 𝐵 < 10
dp2ltc.l 𝐴 < 𝐶
Assertion
Ref Expression
dp2ltc 𝐴𝐵 < 𝐶𝐷

Proof of Theorem dp2ltc
StepHypRef Expression
1 dp2ltc.s . . . . . 6 𝐵 < 10
2 rpssre 12904 . . . . . . . 8 + ⊆ ℝ
3 dp2lt.b . . . . . . . 8 𝐵 ∈ ℝ+
42, 3sselii 3927 . . . . . . 7 𝐵 ∈ ℝ
5 10re 12617 . . . . . . . 8 10 ∈ ℝ
6 10pos 12615 . . . . . . . 8 0 < 10
7 elrp 12898 . . . . . . . 8 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
85, 6, 7mpbir2an 711 . . . . . . 7 10 ∈ ℝ+
9 divlt1lt 12967 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ+) → ((𝐵 / 10) < 1 ↔ 𝐵 < 10))
104, 8, 9mp2an 692 . . . . . 6 ((𝐵 / 10) < 1 ↔ 𝐵 < 10)
111, 10mpbir 231 . . . . 5 (𝐵 / 10) < 1
125, 6gt0ne0ii 11664 . . . . . . 7 10 ≠ 0
134, 5, 12redivcli 11899 . . . . . 6 (𝐵 / 10) ∈ ℝ
14 1re 11123 . . . . . 6 1 ∈ ℝ
15 dp2lt.a . . . . . . 7 𝐴 ∈ ℕ0
1615nn0rei 12403 . . . . . 6 𝐴 ∈ ℝ
17 ltadd2 11228 . . . . . 6 (((𝐵 / 10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1)))
1813, 14, 16, 17mp3an 1463 . . . . 5 ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1))
1911, 18mpbi 230 . . . 4 (𝐴 + (𝐵 / 10)) < (𝐴 + 1)
20 dp2ltc.l . . . . 5 𝐴 < 𝐶
2115nn0zi 12507 . . . . . 6 𝐴 ∈ ℤ
22 dp2ltc.c . . . . . . 7 𝐶 ∈ ℕ0
2322nn0zi 12507 . . . . . 6 𝐶 ∈ ℤ
24 zltp1le 12532 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
2521, 23, 24mp2an 692 . . . . 5 (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)
2620, 25mpbi 230 . . . 4 (𝐴 + 1) ≤ 𝐶
2716, 13readdcli 11138 . . . . 5 (𝐴 + (𝐵 / 10)) ∈ ℝ
2816, 14readdcli 11138 . . . . 5 (𝐴 + 1) ∈ ℝ
2922nn0rei 12403 . . . . 5 𝐶 ∈ ℝ
3027, 28, 29ltletri 11252 . . . 4 (((𝐴 + (𝐵 / 10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / 10)) < 𝐶)
3119, 26, 30mp2an 692 . . 3 (𝐴 + (𝐵 / 10)) < 𝐶
32 dp2ltc.d . . . . . 6 𝐷 ∈ ℝ+
3332, 8pm3.2i 470 . . . . 5 (𝐷 ∈ ℝ+10 ∈ ℝ+)
34 rpdivcl 12923 . . . . 5 ((𝐷 ∈ ℝ+10 ∈ ℝ+) → (𝐷 / 10) ∈ ℝ+)
3533, 34ax-mp 5 . . . 4 (𝐷 / 10) ∈ ℝ+
36 ltaddrp 12935 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐷 / 10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / 10)))
3729, 35, 36mp2an 692 . . 3 𝐶 < (𝐶 + (𝐷 / 10))
382, 32sselii 3927 . . . . . 6 𝐷 ∈ ℝ
3938, 5, 12redivcli 11899 . . . . 5 (𝐷 / 10) ∈ ℝ
4029, 39readdcli 11138 . . . 4 (𝐶 + (𝐷 / 10)) ∈ ℝ
4127, 29, 40lttri 11250 . . 3 (((𝐴 + (𝐵 / 10)) < 𝐶𝐶 < (𝐶 + (𝐷 / 10))) → (𝐴 + (𝐵 / 10)) < (𝐶 + (𝐷 / 10)))
4231, 37, 41mp2an 692 . 2 (𝐴 + (𝐵 / 10)) < (𝐶 + (𝐷 / 10))
43 df-dp2 32881 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
44 df-dp2 32881 . 2 𝐶𝐷 = (𝐶 + (𝐷 / 10))
4542, 43, 443brtr4i 5125 1 𝐴𝐵 < 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2113   class class class wbr 5095  (class class class)co 7355  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cle 11158   / cdiv 11785  0cn0 12392  cz 12479  cdc 12598  +crp 12896  cdp2 32880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-rp 12897  df-dp2 32881
This theorem is referenced by:  dpltc  32916
  Copyright terms: Public domain W3C validator