| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2ltc | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
| dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
| dp2ltc.c | ⊢ 𝐶 ∈ ℕ0 |
| dp2ltc.d | ⊢ 𝐷 ∈ ℝ+ |
| dp2ltc.s | ⊢ 𝐵 < ;10 |
| dp2ltc.l | ⊢ 𝐴 < 𝐶 |
| Ref | Expression |
|---|---|
| dp2ltc | ⊢ _𝐴𝐵 < _𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dp2ltc.s | . . . . . 6 ⊢ 𝐵 < ;10 | |
| 2 | rpssre 12904 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
| 3 | dp2lt.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℝ+ | |
| 4 | 2, 3 | sselii 3927 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
| 5 | 10re 12617 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
| 6 | 10pos 12615 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 7 | elrp 12898 | . . . . . . . 8 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
| 8 | 5, 6, 7 | mpbir2an 711 | . . . . . . 7 ⊢ ;10 ∈ ℝ+ |
| 9 | divlt1lt 12967 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
| 10 | 4, 8, 9 | mp2an 692 | . . . . . 6 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
| 11 | 1, 10 | mpbir 231 | . . . . 5 ⊢ (𝐵 / ;10) < 1 |
| 12 | 5, 6 | gt0ne0ii 11664 | . . . . . . 7 ⊢ ;10 ≠ 0 |
| 13 | 4, 5, 12 | redivcli 11899 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
| 14 | 1re 11123 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 15 | dp2lt.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 16 | 15 | nn0rei 12403 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
| 17 | ltadd2 11228 | . . . . . 6 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1))) | |
| 18 | 13, 14, 16, 17 | mp3an 1463 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1)) |
| 19 | 11, 18 | mpbi 230 | . . . 4 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1) |
| 20 | dp2ltc.l | . . . . 5 ⊢ 𝐴 < 𝐶 | |
| 21 | 15 | nn0zi 12507 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
| 22 | dp2ltc.c | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
| 23 | 22 | nn0zi 12507 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
| 24 | zltp1le 12532 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
| 25 | 21, 23, 24 | mp2an 692 | . . . . 5 ⊢ (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶) |
| 26 | 20, 25 | mpbi 230 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐶 |
| 27 | 16, 13 | readdcli 11138 | . . . . 5 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ |
| 28 | 16, 14 | readdcli 11138 | . . . . 5 ⊢ (𝐴 + 1) ∈ ℝ |
| 29 | 22 | nn0rei 12403 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 30 | 27, 28, 29 | ltletri 11252 | . . . 4 ⊢ (((𝐴 + (𝐵 / ;10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / ;10)) < 𝐶) |
| 31 | 19, 26, 30 | mp2an 692 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < 𝐶 |
| 32 | dp2ltc.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
| 33 | 32, 8 | pm3.2i 470 | . . . . 5 ⊢ (𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) |
| 34 | rpdivcl 12923 | . . . . 5 ⊢ ((𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐷 / ;10) ∈ ℝ+) | |
| 35 | 33, 34 | ax-mp 5 | . . . 4 ⊢ (𝐷 / ;10) ∈ ℝ+ |
| 36 | ltaddrp 12935 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐷 / ;10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / ;10))) | |
| 37 | 29, 35, 36 | mp2an 692 | . . 3 ⊢ 𝐶 < (𝐶 + (𝐷 / ;10)) |
| 38 | 2, 32 | sselii 3927 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
| 39 | 38, 5, 12 | redivcli 11899 | . . . . 5 ⊢ (𝐷 / ;10) ∈ ℝ |
| 40 | 29, 39 | readdcli 11138 | . . . 4 ⊢ (𝐶 + (𝐷 / ;10)) ∈ ℝ |
| 41 | 27, 29, 40 | lttri 11250 | . . 3 ⊢ (((𝐴 + (𝐵 / ;10)) < 𝐶 ∧ 𝐶 < (𝐶 + (𝐷 / ;10))) → (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10))) |
| 42 | 31, 37, 41 | mp2an 692 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10)) |
| 43 | df-dp2 32881 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 44 | df-dp2 32881 | . 2 ⊢ _𝐶𝐷 = (𝐶 + (𝐷 / ;10)) | |
| 45 | 42, 43, 44 | 3brtr4i 5125 | 1 ⊢ _𝐴𝐵 < _𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 < clt 11157 ≤ cle 11158 / cdiv 11785 ℕ0cn0 12392 ℤcz 12479 ;cdc 12598 ℝ+crp 12896 _cdp2 32880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-rp 12897 df-dp2 32881 |
| This theorem is referenced by: dpltc 32916 |
| Copyright terms: Public domain | W3C validator |