![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2ltc | Structured version Visualization version GIF version |
Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
dp2ltc.c | ⊢ 𝐶 ∈ ℕ0 |
dp2ltc.d | ⊢ 𝐷 ∈ ℝ+ |
dp2ltc.s | ⊢ 𝐵 < ;10 |
dp2ltc.l | ⊢ 𝐴 < 𝐶 |
Ref | Expression |
---|---|
dp2ltc | ⊢ _𝐴𝐵 < _𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp2ltc.s | . . . . . 6 ⊢ 𝐵 < ;10 | |
2 | rpssre 13064 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
3 | dp2lt.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℝ+ | |
4 | 2, 3 | sselii 4005 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
5 | 10re 12777 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
6 | 10pos 12775 | . . . . . . . 8 ⊢ 0 < ;10 | |
7 | elrp 13059 | . . . . . . . 8 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
8 | 5, 6, 7 | mpbir2an 710 | . . . . . . 7 ⊢ ;10 ∈ ℝ+ |
9 | divlt1lt 13126 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
10 | 4, 8, 9 | mp2an 691 | . . . . . 6 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
11 | 1, 10 | mpbir 231 | . . . . 5 ⊢ (𝐵 / ;10) < 1 |
12 | 5, 6 | gt0ne0ii 11826 | . . . . . . 7 ⊢ ;10 ≠ 0 |
13 | 4, 5, 12 | redivcli 12061 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
14 | 1re 11290 | . . . . . 6 ⊢ 1 ∈ ℝ | |
15 | dp2lt.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
16 | 15 | nn0rei 12564 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
17 | ltadd2 11394 | . . . . . 6 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1))) | |
18 | 13, 14, 16, 17 | mp3an 1461 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1)) |
19 | 11, 18 | mpbi 230 | . . . 4 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1) |
20 | dp2ltc.l | . . . . 5 ⊢ 𝐴 < 𝐶 | |
21 | 15 | nn0zi 12668 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
22 | dp2ltc.c | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
23 | 22 | nn0zi 12668 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
24 | zltp1le 12693 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
25 | 21, 23, 24 | mp2an 691 | . . . . 5 ⊢ (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶) |
26 | 20, 25 | mpbi 230 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐶 |
27 | 16, 13 | readdcli 11305 | . . . . 5 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ |
28 | 16, 14 | readdcli 11305 | . . . . 5 ⊢ (𝐴 + 1) ∈ ℝ |
29 | 22 | nn0rei 12564 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
30 | 27, 28, 29 | ltletri 11418 | . . . 4 ⊢ (((𝐴 + (𝐵 / ;10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / ;10)) < 𝐶) |
31 | 19, 26, 30 | mp2an 691 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < 𝐶 |
32 | dp2ltc.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
33 | 32, 8 | pm3.2i 470 | . . . . 5 ⊢ (𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) |
34 | rpdivcl 13082 | . . . . 5 ⊢ ((𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐷 / ;10) ∈ ℝ+) | |
35 | 33, 34 | ax-mp 5 | . . . 4 ⊢ (𝐷 / ;10) ∈ ℝ+ |
36 | ltaddrp 13094 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐷 / ;10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / ;10))) | |
37 | 29, 35, 36 | mp2an 691 | . . 3 ⊢ 𝐶 < (𝐶 + (𝐷 / ;10)) |
38 | 2, 32 | sselii 4005 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
39 | 38, 5, 12 | redivcli 12061 | . . . . 5 ⊢ (𝐷 / ;10) ∈ ℝ |
40 | 29, 39 | readdcli 11305 | . . . 4 ⊢ (𝐶 + (𝐷 / ;10)) ∈ ℝ |
41 | 27, 29, 40 | lttri 11416 | . . 3 ⊢ (((𝐴 + (𝐵 / ;10)) < 𝐶 ∧ 𝐶 < (𝐶 + (𝐷 / ;10))) → (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10))) |
42 | 31, 37, 41 | mp2an 691 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10)) |
43 | df-dp2 32836 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
44 | df-dp2 32836 | . 2 ⊢ _𝐶𝐷 = (𝐶 + (𝐷 / ;10)) | |
45 | 42, 43, 44 | 3brtr4i 5196 | 1 ⊢ _𝐴𝐵 < _𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 / cdiv 11947 ℕ0cn0 12553 ℤcz 12639 ;cdc 12758 ℝ+crp 13057 _cdp2 32835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-rp 13058 df-dp2 32836 |
This theorem is referenced by: dpltc 32871 |
Copyright terms: Public domain | W3C validator |