Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2ltc | Structured version Visualization version GIF version |
Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
dp2ltc.c | ⊢ 𝐶 ∈ ℕ0 |
dp2ltc.d | ⊢ 𝐷 ∈ ℝ+ |
dp2ltc.s | ⊢ 𝐵 < ;10 |
dp2ltc.l | ⊢ 𝐴 < 𝐶 |
Ref | Expression |
---|---|
dp2ltc | ⊢ _𝐴𝐵 < _𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp2ltc.s | . . . . . 6 ⊢ 𝐵 < ;10 | |
2 | rpssre 12666 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
3 | dp2lt.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℝ+ | |
4 | 2, 3 | sselii 3914 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
5 | 10re 12385 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
6 | 10pos 12383 | . . . . . . . 8 ⊢ 0 < ;10 | |
7 | elrp 12661 | . . . . . . . 8 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
8 | 5, 6, 7 | mpbir2an 707 | . . . . . . 7 ⊢ ;10 ∈ ℝ+ |
9 | divlt1lt 12728 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
10 | 4, 8, 9 | mp2an 688 | . . . . . 6 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
11 | 1, 10 | mpbir 230 | . . . . 5 ⊢ (𝐵 / ;10) < 1 |
12 | 5, 6 | gt0ne0ii 11441 | . . . . . . 7 ⊢ ;10 ≠ 0 |
13 | 4, 5, 12 | redivcli 11672 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
14 | 1re 10906 | . . . . . 6 ⊢ 1 ∈ ℝ | |
15 | dp2lt.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
16 | 15 | nn0rei 12174 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
17 | ltadd2 11009 | . . . . . 6 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1))) | |
18 | 13, 14, 16, 17 | mp3an 1459 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1)) |
19 | 11, 18 | mpbi 229 | . . . 4 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1) |
20 | dp2ltc.l | . . . . 5 ⊢ 𝐴 < 𝐶 | |
21 | 15 | nn0zi 12275 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
22 | dp2ltc.c | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
23 | 22 | nn0zi 12275 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
24 | zltp1le 12300 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
25 | 21, 23, 24 | mp2an 688 | . . . . 5 ⊢ (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶) |
26 | 20, 25 | mpbi 229 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐶 |
27 | 16, 13 | readdcli 10921 | . . . . 5 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ |
28 | 16, 14 | readdcli 10921 | . . . . 5 ⊢ (𝐴 + 1) ∈ ℝ |
29 | 22 | nn0rei 12174 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
30 | 27, 28, 29 | ltletri 11033 | . . . 4 ⊢ (((𝐴 + (𝐵 / ;10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / ;10)) < 𝐶) |
31 | 19, 26, 30 | mp2an 688 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < 𝐶 |
32 | dp2ltc.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
33 | 32, 8 | pm3.2i 470 | . . . . 5 ⊢ (𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) |
34 | rpdivcl 12684 | . . . . 5 ⊢ ((𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐷 / ;10) ∈ ℝ+) | |
35 | 33, 34 | ax-mp 5 | . . . 4 ⊢ (𝐷 / ;10) ∈ ℝ+ |
36 | ltaddrp 12696 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐷 / ;10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / ;10))) | |
37 | 29, 35, 36 | mp2an 688 | . . 3 ⊢ 𝐶 < (𝐶 + (𝐷 / ;10)) |
38 | 2, 32 | sselii 3914 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
39 | 38, 5, 12 | redivcli 11672 | . . . . 5 ⊢ (𝐷 / ;10) ∈ ℝ |
40 | 29, 39 | readdcli 10921 | . . . 4 ⊢ (𝐶 + (𝐷 / ;10)) ∈ ℝ |
41 | 27, 29, 40 | lttri 11031 | . . 3 ⊢ (((𝐴 + (𝐵 / ;10)) < 𝐶 ∧ 𝐶 < (𝐶 + (𝐷 / ;10))) → (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10))) |
42 | 31, 37, 41 | mp2an 688 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10)) |
43 | df-dp2 31048 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
44 | df-dp2 31048 | . 2 ⊢ _𝐶𝐷 = (𝐶 + (𝐷 / ;10)) | |
45 | 42, 43, 44 | 3brtr4i 5100 | 1 ⊢ _𝐴𝐵 < _𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 / cdiv 11562 ℕ0cn0 12163 ℤcz 12249 ;cdc 12366 ℝ+crp 12659 _cdp2 31047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-rp 12660 df-dp2 31048 |
This theorem is referenced by: dpltc 31083 |
Copyright terms: Public domain | W3C validator |