![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2ltc | Structured version Visualization version GIF version |
Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
dp2ltc.c | ⊢ 𝐶 ∈ ℕ0 |
dp2ltc.d | ⊢ 𝐷 ∈ ℝ+ |
dp2ltc.s | ⊢ 𝐵 < ;10 |
dp2ltc.l | ⊢ 𝐴 < 𝐶 |
Ref | Expression |
---|---|
dp2ltc | ⊢ _𝐴𝐵 < _𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp2ltc.s | . . . . . 6 ⊢ 𝐵 < ;10 | |
2 | rpssre 12988 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
3 | dp2lt.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℝ+ | |
4 | 2, 3 | sselii 3979 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
5 | 10re 12703 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
6 | 10pos 12701 | . . . . . . . 8 ⊢ 0 < ;10 | |
7 | elrp 12983 | . . . . . . . 8 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
8 | 5, 6, 7 | mpbir2an 708 | . . . . . . 7 ⊢ ;10 ∈ ℝ+ |
9 | divlt1lt 13050 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
10 | 4, 8, 9 | mp2an 689 | . . . . . 6 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
11 | 1, 10 | mpbir 230 | . . . . 5 ⊢ (𝐵 / ;10) < 1 |
12 | 5, 6 | gt0ne0ii 11757 | . . . . . . 7 ⊢ ;10 ≠ 0 |
13 | 4, 5, 12 | redivcli 11988 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
14 | 1re 11221 | . . . . . 6 ⊢ 1 ∈ ℝ | |
15 | dp2lt.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
16 | 15 | nn0rei 12490 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
17 | ltadd2 11325 | . . . . . 6 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1))) | |
18 | 13, 14, 16, 17 | mp3an 1460 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1)) |
19 | 11, 18 | mpbi 229 | . . . 4 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1) |
20 | dp2ltc.l | . . . . 5 ⊢ 𝐴 < 𝐶 | |
21 | 15 | nn0zi 12594 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
22 | dp2ltc.c | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
23 | 22 | nn0zi 12594 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
24 | zltp1le 12619 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
25 | 21, 23, 24 | mp2an 689 | . . . . 5 ⊢ (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶) |
26 | 20, 25 | mpbi 229 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐶 |
27 | 16, 13 | readdcli 11236 | . . . . 5 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ |
28 | 16, 14 | readdcli 11236 | . . . . 5 ⊢ (𝐴 + 1) ∈ ℝ |
29 | 22 | nn0rei 12490 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
30 | 27, 28, 29 | ltletri 11349 | . . . 4 ⊢ (((𝐴 + (𝐵 / ;10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / ;10)) < 𝐶) |
31 | 19, 26, 30 | mp2an 689 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < 𝐶 |
32 | dp2ltc.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
33 | 32, 8 | pm3.2i 470 | . . . . 5 ⊢ (𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) |
34 | rpdivcl 13006 | . . . . 5 ⊢ ((𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐷 / ;10) ∈ ℝ+) | |
35 | 33, 34 | ax-mp 5 | . . . 4 ⊢ (𝐷 / ;10) ∈ ℝ+ |
36 | ltaddrp 13018 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐷 / ;10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / ;10))) | |
37 | 29, 35, 36 | mp2an 689 | . . 3 ⊢ 𝐶 < (𝐶 + (𝐷 / ;10)) |
38 | 2, 32 | sselii 3979 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
39 | 38, 5, 12 | redivcli 11988 | . . . . 5 ⊢ (𝐷 / ;10) ∈ ℝ |
40 | 29, 39 | readdcli 11236 | . . . 4 ⊢ (𝐶 + (𝐷 / ;10)) ∈ ℝ |
41 | 27, 29, 40 | lttri 11347 | . . 3 ⊢ (((𝐴 + (𝐵 / ;10)) < 𝐶 ∧ 𝐶 < (𝐶 + (𝐷 / ;10))) → (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10))) |
42 | 31, 37, 41 | mp2an 689 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10)) |
43 | df-dp2 32470 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
44 | df-dp2 32470 | . 2 ⊢ _𝐶𝐷 = (𝐶 + (𝐷 / ;10)) | |
45 | 42, 43, 44 | 3brtr4i 5178 | 1 ⊢ _𝐴𝐵 < _𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 ℝcr 11115 0cc0 11116 1c1 11117 + caddc 11119 < clt 11255 ≤ cle 11256 / cdiv 11878 ℕ0cn0 12479 ℤcz 12565 ;cdc 12684 ℝ+crp 12981 _cdp2 32469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-rp 12982 df-dp2 32470 |
This theorem is referenced by: dpltc 32505 |
Copyright terms: Public domain | W3C validator |