| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2ltc | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
| dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
| dp2ltc.c | ⊢ 𝐶 ∈ ℕ0 |
| dp2ltc.d | ⊢ 𝐷 ∈ ℝ+ |
| dp2ltc.s | ⊢ 𝐵 < ;10 |
| dp2ltc.l | ⊢ 𝐴 < 𝐶 |
| Ref | Expression |
|---|---|
| dp2ltc | ⊢ _𝐴𝐵 < _𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dp2ltc.s | . . . . . 6 ⊢ 𝐵 < ;10 | |
| 2 | rpssre 12966 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
| 3 | dp2lt.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℝ+ | |
| 4 | 2, 3 | sselii 3946 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
| 5 | 10re 12675 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
| 6 | 10pos 12673 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 7 | elrp 12960 | . . . . . . . 8 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
| 8 | 5, 6, 7 | mpbir2an 711 | . . . . . . 7 ⊢ ;10 ∈ ℝ+ |
| 9 | divlt1lt 13029 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
| 10 | 4, 8, 9 | mp2an 692 | . . . . . 6 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
| 11 | 1, 10 | mpbir 231 | . . . . 5 ⊢ (𝐵 / ;10) < 1 |
| 12 | 5, 6 | gt0ne0ii 11721 | . . . . . . 7 ⊢ ;10 ≠ 0 |
| 13 | 4, 5, 12 | redivcli 11956 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
| 14 | 1re 11181 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 15 | dp2lt.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 16 | 15 | nn0rei 12460 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
| 17 | ltadd2 11285 | . . . . . 6 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1))) | |
| 18 | 13, 14, 16, 17 | mp3an 1463 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1)) |
| 19 | 11, 18 | mpbi 230 | . . . 4 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1) |
| 20 | dp2ltc.l | . . . . 5 ⊢ 𝐴 < 𝐶 | |
| 21 | 15 | nn0zi 12565 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
| 22 | dp2ltc.c | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
| 23 | 22 | nn0zi 12565 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
| 24 | zltp1le 12590 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
| 25 | 21, 23, 24 | mp2an 692 | . . . . 5 ⊢ (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶) |
| 26 | 20, 25 | mpbi 230 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐶 |
| 27 | 16, 13 | readdcli 11196 | . . . . 5 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ |
| 28 | 16, 14 | readdcli 11196 | . . . . 5 ⊢ (𝐴 + 1) ∈ ℝ |
| 29 | 22 | nn0rei 12460 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 30 | 27, 28, 29 | ltletri 11309 | . . . 4 ⊢ (((𝐴 + (𝐵 / ;10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / ;10)) < 𝐶) |
| 31 | 19, 26, 30 | mp2an 692 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < 𝐶 |
| 32 | dp2ltc.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
| 33 | 32, 8 | pm3.2i 470 | . . . . 5 ⊢ (𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) |
| 34 | rpdivcl 12985 | . . . . 5 ⊢ ((𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐷 / ;10) ∈ ℝ+) | |
| 35 | 33, 34 | ax-mp 5 | . . . 4 ⊢ (𝐷 / ;10) ∈ ℝ+ |
| 36 | ltaddrp 12997 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐷 / ;10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / ;10))) | |
| 37 | 29, 35, 36 | mp2an 692 | . . 3 ⊢ 𝐶 < (𝐶 + (𝐷 / ;10)) |
| 38 | 2, 32 | sselii 3946 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
| 39 | 38, 5, 12 | redivcli 11956 | . . . . 5 ⊢ (𝐷 / ;10) ∈ ℝ |
| 40 | 29, 39 | readdcli 11196 | . . . 4 ⊢ (𝐶 + (𝐷 / ;10)) ∈ ℝ |
| 41 | 27, 29, 40 | lttri 11307 | . . 3 ⊢ (((𝐴 + (𝐵 / ;10)) < 𝐶 ∧ 𝐶 < (𝐶 + (𝐷 / ;10))) → (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10))) |
| 42 | 31, 37, 41 | mp2an 692 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10)) |
| 43 | df-dp2 32799 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 44 | df-dp2 32799 | . 2 ⊢ _𝐶𝐷 = (𝐶 + (𝐷 / ;10)) | |
| 45 | 42, 43, 44 | 3brtr4i 5140 | 1 ⊢ _𝐴𝐵 < _𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 ≤ cle 11216 / cdiv 11842 ℕ0cn0 12449 ℤcz 12536 ;cdc 12656 ℝ+crp 12958 _cdp2 32798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-rp 12959 df-dp2 32799 |
| This theorem is referenced by: dpltc 32834 |
| Copyright terms: Public domain | W3C validator |