| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2ltc | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
| dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
| dp2ltc.c | ⊢ 𝐶 ∈ ℕ0 |
| dp2ltc.d | ⊢ 𝐷 ∈ ℝ+ |
| dp2ltc.s | ⊢ 𝐵 < ;10 |
| dp2ltc.l | ⊢ 𝐴 < 𝐶 |
| Ref | Expression |
|---|---|
| dp2ltc | ⊢ _𝐴𝐵 < _𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dp2ltc.s | . . . . . 6 ⊢ 𝐵 < ;10 | |
| 2 | rpssre 12893 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
| 3 | dp2lt.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℝ+ | |
| 4 | 2, 3 | sselii 3926 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
| 5 | 10re 12602 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
| 6 | 10pos 12600 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 7 | elrp 12887 | . . . . . . . 8 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
| 8 | 5, 6, 7 | mpbir2an 711 | . . . . . . 7 ⊢ ;10 ∈ ℝ+ |
| 9 | divlt1lt 12956 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
| 10 | 4, 8, 9 | mp2an 692 | . . . . . 6 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
| 11 | 1, 10 | mpbir 231 | . . . . 5 ⊢ (𝐵 / ;10) < 1 |
| 12 | 5, 6 | gt0ne0ii 11648 | . . . . . . 7 ⊢ ;10 ≠ 0 |
| 13 | 4, 5, 12 | redivcli 11883 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
| 14 | 1re 11107 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 15 | dp2lt.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 16 | 15 | nn0rei 12387 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
| 17 | ltadd2 11212 | . . . . . 6 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1))) | |
| 18 | 13, 14, 16, 17 | mp3an 1463 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1)) |
| 19 | 11, 18 | mpbi 230 | . . . 4 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1) |
| 20 | dp2ltc.l | . . . . 5 ⊢ 𝐴 < 𝐶 | |
| 21 | 15 | nn0zi 12492 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
| 22 | dp2ltc.c | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
| 23 | 22 | nn0zi 12492 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
| 24 | zltp1le 12517 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
| 25 | 21, 23, 24 | mp2an 692 | . . . . 5 ⊢ (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶) |
| 26 | 20, 25 | mpbi 230 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐶 |
| 27 | 16, 13 | readdcli 11122 | . . . . 5 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ |
| 28 | 16, 14 | readdcli 11122 | . . . . 5 ⊢ (𝐴 + 1) ∈ ℝ |
| 29 | 22 | nn0rei 12387 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 30 | 27, 28, 29 | ltletri 11236 | . . . 4 ⊢ (((𝐴 + (𝐵 / ;10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / ;10)) < 𝐶) |
| 31 | 19, 26, 30 | mp2an 692 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < 𝐶 |
| 32 | dp2ltc.d | . . . . . 6 ⊢ 𝐷 ∈ ℝ+ | |
| 33 | 32, 8 | pm3.2i 470 | . . . . 5 ⊢ (𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) |
| 34 | rpdivcl 12912 | . . . . 5 ⊢ ((𝐷 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐷 / ;10) ∈ ℝ+) | |
| 35 | 33, 34 | ax-mp 5 | . . . 4 ⊢ (𝐷 / ;10) ∈ ℝ+ |
| 36 | ltaddrp 12924 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐷 / ;10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / ;10))) | |
| 37 | 29, 35, 36 | mp2an 692 | . . 3 ⊢ 𝐶 < (𝐶 + (𝐷 / ;10)) |
| 38 | 2, 32 | sselii 3926 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
| 39 | 38, 5, 12 | redivcli 11883 | . . . . 5 ⊢ (𝐷 / ;10) ∈ ℝ |
| 40 | 29, 39 | readdcli 11122 | . . . 4 ⊢ (𝐶 + (𝐷 / ;10)) ∈ ℝ |
| 41 | 27, 29, 40 | lttri 11234 | . . 3 ⊢ (((𝐴 + (𝐵 / ;10)) < 𝐶 ∧ 𝐶 < (𝐶 + (𝐷 / ;10))) → (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10))) |
| 42 | 31, 37, 41 | mp2an 692 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐶 + (𝐷 / ;10)) |
| 43 | df-dp2 32844 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 44 | df-dp2 32844 | . 2 ⊢ _𝐶𝐷 = (𝐶 + (𝐷 / ;10)) | |
| 45 | 42, 43, 44 | 3brtr4i 5116 | 1 ⊢ _𝐴𝐵 < _𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 < clt 11141 ≤ cle 11142 / cdiv 11769 ℕ0cn0 12376 ℤcz 12463 ;cdc 12583 ℝ+crp 12885 _cdp2 32843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-rp 12886 df-dp2 32844 |
| This theorem is referenced by: dpltc 32879 |
| Copyright terms: Public domain | W3C validator |