HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Structured version   Visualization version   GIF version

Theorem normlem6 31134
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem6.7 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem6 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))

Proof of Theorem normlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9 𝐴 = (𝐺 ·ih 𝐺)
2 normlem1.3 . . . . . . . . . 10 𝐺 ∈ ℋ
3 hiidrcl 31114 . . . . . . . . . 10 (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ)
42, 3ax-mp 5 . . . . . . . . 9 (𝐺 ·ih 𝐺) ∈ ℝ
51, 4eqeltri 2837 . . . . . . . 8 𝐴 ∈ ℝ
65a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ ℝ)
7 normlem1.1 . . . . . . . . 9 𝑆 ∈ ℂ
8 normlem1.2 . . . . . . . . 9 𝐹 ∈ ℋ
9 normlem2.4 . . . . . . . . 9 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
107, 8, 2, 9normlem2 31130 . . . . . . . 8 𝐵 ∈ ℝ
1110a1i 11 . . . . . . 7 (⊤ → 𝐵 ∈ ℝ)
12 normlem3.6 . . . . . . . . 9 𝐶 = (𝐹 ·ih 𝐹)
13 hiidrcl 31114 . . . . . . . . . 10 (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ)
148, 13ax-mp 5 . . . . . . . . 9 (𝐹 ·ih 𝐹) ∈ ℝ
1512, 14eqeltri 2837 . . . . . . . 8 𝐶 ∈ ℝ
1615a1i 11 . . . . . . 7 (⊤ → 𝐶 ∈ ℝ)
17 oveq1 7438 . . . . . . . . . . . . 13 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝑥↑2) = (if(𝑥 ∈ ℝ, 𝑥, 0)↑2))
1817oveq2d 7447 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐴 · (𝑥↑2)) = (𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)))
19 oveq2 7439 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐵 · 𝑥) = (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0)))
2018, 19oveq12d 7449 . . . . . . . . . . 11 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))))
2120oveq1d 7446 . . . . . . . . . 10 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶))
2221breq2d 5155 . . . . . . . . 9 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)))
23 0re 11263 . . . . . . . . . . 11 0 ∈ ℝ
2423elimel 4595 . . . . . . . . . 10 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ ℝ
25 normlem6.7 . . . . . . . . . 10 (abs‘𝑆) = 1
267, 8, 2, 9, 1, 12, 24, 25normlem5 31133 . . . . . . . . 9 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)
2722, 26dedth 4584 . . . . . . . 8 (𝑥 ∈ ℝ → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
2827adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
296, 11, 16, 28discr 14279 . . . . . 6 (⊤ → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
3029mptru 1547 . . . . 5 ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0
3110resqcli 14225 . . . . . 6 (𝐵↑2) ∈ ℝ
32 4re 12350 . . . . . . 7 4 ∈ ℝ
335, 15remulcli 11277 . . . . . . 7 (𝐴 · 𝐶) ∈ ℝ
3432, 33remulcli 11277 . . . . . 6 (4 · (𝐴 · 𝐶)) ∈ ℝ
3531, 34, 23lesubadd2i 11823 . . . . 5 (((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0 ↔ (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0))
3630, 35mpbi 230 . . . 4 (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0)
3734recni 11275 . . . . 5 (4 · (𝐴 · 𝐶)) ∈ ℂ
3837addridi 11448 . . . 4 ((4 · (𝐴 · 𝐶)) + 0) = (4 · (𝐴 · 𝐶))
3936, 38breqtri 5168 . . 3 (𝐵↑2) ≤ (4 · (𝐴 · 𝐶))
4010sqge0i 14227 . . . 4 0 ≤ (𝐵↑2)
41 4pos 12373 . . . . . 6 0 < 4
4223, 32, 41ltleii 11384 . . . . 5 0 ≤ 4
43 hiidge0 31117 . . . . . . . 8 (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺))
442, 43ax-mp 5 . . . . . . 7 0 ≤ (𝐺 ·ih 𝐺)
4544, 1breqtrri 5170 . . . . . 6 0 ≤ 𝐴
46 hiidge0 31117 . . . . . . . 8 (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹))
478, 46ax-mp 5 . . . . . . 7 0 ≤ (𝐹 ·ih 𝐹)
4847, 12breqtrri 5170 . . . . . 6 0 ≤ 𝐶
495, 15mulge0i 11810 . . . . . 6 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶) → 0 ≤ (𝐴 · 𝐶))
5045, 48, 49mp2an 692 . . . . 5 0 ≤ (𝐴 · 𝐶)
5132, 33mulge0i 11810 . . . . 5 ((0 ≤ 4 ∧ 0 ≤ (𝐴 · 𝐶)) → 0 ≤ (4 · (𝐴 · 𝐶)))
5242, 50, 51mp2an 692 . . . 4 0 ≤ (4 · (𝐴 · 𝐶))
5331, 34sqrtlei 15427 . . . 4 ((0 ≤ (𝐵↑2) ∧ 0 ≤ (4 · (𝐴 · 𝐶))) → ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))))
5440, 52, 53mp2an 692 . . 3 ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶))))
5539, 54mpbi 230 . 2 (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))
5610absrei 15420 . 2 (abs‘𝐵) = (√‘(𝐵↑2))
5732, 33, 42, 50sqrtmulii 15425 . . 3 (√‘(4 · (𝐴 · 𝐶))) = ((√‘4) · (√‘(𝐴 · 𝐶)))
58 sqrt4 15311 . . . 4 (√‘4) = 2
595, 15, 45, 48sqrtmulii 15425 . . . 4 (√‘(𝐴 · 𝐶)) = ((√‘𝐴) · (√‘𝐶))
6058, 59oveq12i 7443 . . 3 ((√‘4) · (√‘(𝐴 · 𝐶))) = (2 · ((√‘𝐴) · (√‘𝐶)))
6157, 60eqtr2i 2766 . 2 (2 · ((√‘𝐴) · (√‘𝐶))) = (√‘(4 · (𝐴 · 𝐶)))
6255, 56, 613brtr4i 5173 1 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wtru 1541  wcel 2108  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  -cneg 11493  2c2 12321  4c4 12323  cexp 14102  ccj 15135  csqrt 15272  abscabs 15273  chba 30938   ·ih csp 30941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-hfvadd 31019  ax-hv0cl 31022  ax-hfvmul 31024  ax-hvmulass 31026  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-hvsub 30990
This theorem is referenced by:  normlem7  31135
  Copyright terms: Public domain W3C validator