HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Structured version   Visualization version   GIF version

Theorem normlem6 31144
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem6.7 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem6 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))

Proof of Theorem normlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9 𝐴 = (𝐺 ·ih 𝐺)
2 normlem1.3 . . . . . . . . . 10 𝐺 ∈ ℋ
3 hiidrcl 31124 . . . . . . . . . 10 (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ)
42, 3ax-mp 5 . . . . . . . . 9 (𝐺 ·ih 𝐺) ∈ ℝ
51, 4eqeltri 2835 . . . . . . . 8 𝐴 ∈ ℝ
65a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ ℝ)
7 normlem1.1 . . . . . . . . 9 𝑆 ∈ ℂ
8 normlem1.2 . . . . . . . . 9 𝐹 ∈ ℋ
9 normlem2.4 . . . . . . . . 9 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
107, 8, 2, 9normlem2 31140 . . . . . . . 8 𝐵 ∈ ℝ
1110a1i 11 . . . . . . 7 (⊤ → 𝐵 ∈ ℝ)
12 normlem3.6 . . . . . . . . 9 𝐶 = (𝐹 ·ih 𝐹)
13 hiidrcl 31124 . . . . . . . . . 10 (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ)
148, 13ax-mp 5 . . . . . . . . 9 (𝐹 ·ih 𝐹) ∈ ℝ
1512, 14eqeltri 2835 . . . . . . . 8 𝐶 ∈ ℝ
1615a1i 11 . . . . . . 7 (⊤ → 𝐶 ∈ ℝ)
17 oveq1 7438 . . . . . . . . . . . . 13 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝑥↑2) = (if(𝑥 ∈ ℝ, 𝑥, 0)↑2))
1817oveq2d 7447 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐴 · (𝑥↑2)) = (𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)))
19 oveq2 7439 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐵 · 𝑥) = (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0)))
2018, 19oveq12d 7449 . . . . . . . . . . 11 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))))
2120oveq1d 7446 . . . . . . . . . 10 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶))
2221breq2d 5160 . . . . . . . . 9 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)))
23 0re 11261 . . . . . . . . . . 11 0 ∈ ℝ
2423elimel 4600 . . . . . . . . . 10 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ ℝ
25 normlem6.7 . . . . . . . . . 10 (abs‘𝑆) = 1
267, 8, 2, 9, 1, 12, 24, 25normlem5 31143 . . . . . . . . 9 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)
2722, 26dedth 4589 . . . . . . . 8 (𝑥 ∈ ℝ → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
2827adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
296, 11, 16, 28discr 14276 . . . . . 6 (⊤ → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
3029mptru 1544 . . . . 5 ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0
3110resqcli 14222 . . . . . 6 (𝐵↑2) ∈ ℝ
32 4re 12348 . . . . . . 7 4 ∈ ℝ
335, 15remulcli 11275 . . . . . . 7 (𝐴 · 𝐶) ∈ ℝ
3432, 33remulcli 11275 . . . . . 6 (4 · (𝐴 · 𝐶)) ∈ ℝ
3531, 34, 23lesubadd2i 11821 . . . . 5 (((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0 ↔ (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0))
3630, 35mpbi 230 . . . 4 (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0)
3734recni 11273 . . . . 5 (4 · (𝐴 · 𝐶)) ∈ ℂ
3837addridi 11446 . . . 4 ((4 · (𝐴 · 𝐶)) + 0) = (4 · (𝐴 · 𝐶))
3936, 38breqtri 5173 . . 3 (𝐵↑2) ≤ (4 · (𝐴 · 𝐶))
4010sqge0i 14224 . . . 4 0 ≤ (𝐵↑2)
41 4pos 12371 . . . . . 6 0 < 4
4223, 32, 41ltleii 11382 . . . . 5 0 ≤ 4
43 hiidge0 31127 . . . . . . . 8 (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺))
442, 43ax-mp 5 . . . . . . 7 0 ≤ (𝐺 ·ih 𝐺)
4544, 1breqtrri 5175 . . . . . 6 0 ≤ 𝐴
46 hiidge0 31127 . . . . . . . 8 (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹))
478, 46ax-mp 5 . . . . . . 7 0 ≤ (𝐹 ·ih 𝐹)
4847, 12breqtrri 5175 . . . . . 6 0 ≤ 𝐶
495, 15mulge0i 11808 . . . . . 6 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶) → 0 ≤ (𝐴 · 𝐶))
5045, 48, 49mp2an 692 . . . . 5 0 ≤ (𝐴 · 𝐶)
5132, 33mulge0i 11808 . . . . 5 ((0 ≤ 4 ∧ 0 ≤ (𝐴 · 𝐶)) → 0 ≤ (4 · (𝐴 · 𝐶)))
5242, 50, 51mp2an 692 . . . 4 0 ≤ (4 · (𝐴 · 𝐶))
5331, 34sqrtlei 15424 . . . 4 ((0 ≤ (𝐵↑2) ∧ 0 ≤ (4 · (𝐴 · 𝐶))) → ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))))
5440, 52, 53mp2an 692 . . 3 ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶))))
5539, 54mpbi 230 . 2 (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))
5610absrei 15417 . 2 (abs‘𝐵) = (√‘(𝐵↑2))
5732, 33, 42, 50sqrtmulii 15422 . . 3 (√‘(4 · (𝐴 · 𝐶))) = ((√‘4) · (√‘(𝐴 · 𝐶)))
58 sqrt4 15308 . . . 4 (√‘4) = 2
595, 15, 45, 48sqrtmulii 15422 . . . 4 (√‘(𝐴 · 𝐶)) = ((√‘𝐴) · (√‘𝐶))
6058, 59oveq12i 7443 . . 3 ((√‘4) · (√‘(𝐴 · 𝐶))) = (2 · ((√‘𝐴) · (√‘𝐶)))
6157, 60eqtr2i 2764 . 2 (2 · ((√‘𝐴) · (√‘𝐶))) = (√‘(4 · (𝐴 · 𝐶)))
6255, 56, 613brtr4i 5178 1 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wtru 1538  wcel 2106  ifcif 4531   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  cmin 11490  -cneg 11491  2c2 12319  4c4 12321  cexp 14099  ccj 15132  csqrt 15269  abscabs 15270  chba 30948   ·ih csp 30951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hfvadd 31029  ax-hv0cl 31032  ax-hfvmul 31034  ax-hvmulass 31036  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-hvsub 31000
This theorem is referenced by:  normlem7  31145
  Copyright terms: Public domain W3C validator