HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Structured version   Visualization version   GIF version

Theorem normlem6 30057
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem6.7 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem6 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))

Proof of Theorem normlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9 𝐴 = (𝐺 ·ih 𝐺)
2 normlem1.3 . . . . . . . . . 10 𝐺 ∈ ℋ
3 hiidrcl 30037 . . . . . . . . . 10 (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ)
42, 3ax-mp 5 . . . . . . . . 9 (𝐺 ·ih 𝐺) ∈ ℝ
51, 4eqeltri 2834 . . . . . . . 8 𝐴 ∈ ℝ
65a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ ℝ)
7 normlem1.1 . . . . . . . . 9 𝑆 ∈ ℂ
8 normlem1.2 . . . . . . . . 9 𝐹 ∈ ℋ
9 normlem2.4 . . . . . . . . 9 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
107, 8, 2, 9normlem2 30053 . . . . . . . 8 𝐵 ∈ ℝ
1110a1i 11 . . . . . . 7 (⊤ → 𝐵 ∈ ℝ)
12 normlem3.6 . . . . . . . . 9 𝐶 = (𝐹 ·ih 𝐹)
13 hiidrcl 30037 . . . . . . . . . 10 (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ)
148, 13ax-mp 5 . . . . . . . . 9 (𝐹 ·ih 𝐹) ∈ ℝ
1512, 14eqeltri 2834 . . . . . . . 8 𝐶 ∈ ℝ
1615a1i 11 . . . . . . 7 (⊤ → 𝐶 ∈ ℝ)
17 oveq1 7364 . . . . . . . . . . . . 13 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝑥↑2) = (if(𝑥 ∈ ℝ, 𝑥, 0)↑2))
1817oveq2d 7373 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐴 · (𝑥↑2)) = (𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)))
19 oveq2 7365 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐵 · 𝑥) = (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0)))
2018, 19oveq12d 7375 . . . . . . . . . . 11 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))))
2120oveq1d 7372 . . . . . . . . . 10 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶))
2221breq2d 5117 . . . . . . . . 9 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)))
23 0re 11157 . . . . . . . . . . 11 0 ∈ ℝ
2423elimel 4555 . . . . . . . . . 10 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ ℝ
25 normlem6.7 . . . . . . . . . 10 (abs‘𝑆) = 1
267, 8, 2, 9, 1, 12, 24, 25normlem5 30056 . . . . . . . . 9 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)
2722, 26dedth 4544 . . . . . . . 8 (𝑥 ∈ ℝ → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
2827adantl 482 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
296, 11, 16, 28discr 14143 . . . . . 6 (⊤ → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
3029mptru 1548 . . . . 5 ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0
3110resqcli 14090 . . . . . 6 (𝐵↑2) ∈ ℝ
32 4re 12237 . . . . . . 7 4 ∈ ℝ
335, 15remulcli 11171 . . . . . . 7 (𝐴 · 𝐶) ∈ ℝ
3432, 33remulcli 11171 . . . . . 6 (4 · (𝐴 · 𝐶)) ∈ ℝ
3531, 34, 23lesubadd2i 11715 . . . . 5 (((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0 ↔ (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0))
3630, 35mpbi 229 . . . 4 (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0)
3734recni 11169 . . . . 5 (4 · (𝐴 · 𝐶)) ∈ ℂ
3837addid1i 11342 . . . 4 ((4 · (𝐴 · 𝐶)) + 0) = (4 · (𝐴 · 𝐶))
3936, 38breqtri 5130 . . 3 (𝐵↑2) ≤ (4 · (𝐴 · 𝐶))
4010sqge0i 14092 . . . 4 0 ≤ (𝐵↑2)
41 4pos 12260 . . . . . 6 0 < 4
4223, 32, 41ltleii 11278 . . . . 5 0 ≤ 4
43 hiidge0 30040 . . . . . . . 8 (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺))
442, 43ax-mp 5 . . . . . . 7 0 ≤ (𝐺 ·ih 𝐺)
4544, 1breqtrri 5132 . . . . . 6 0 ≤ 𝐴
46 hiidge0 30040 . . . . . . . 8 (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹))
478, 46ax-mp 5 . . . . . . 7 0 ≤ (𝐹 ·ih 𝐹)
4847, 12breqtrri 5132 . . . . . 6 0 ≤ 𝐶
495, 15mulge0i 11702 . . . . . 6 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶) → 0 ≤ (𝐴 · 𝐶))
5045, 48, 49mp2an 690 . . . . 5 0 ≤ (𝐴 · 𝐶)
5132, 33mulge0i 11702 . . . . 5 ((0 ≤ 4 ∧ 0 ≤ (𝐴 · 𝐶)) → 0 ≤ (4 · (𝐴 · 𝐶)))
5242, 50, 51mp2an 690 . . . 4 0 ≤ (4 · (𝐴 · 𝐶))
5331, 34sqrtlei 15273 . . . 4 ((0 ≤ (𝐵↑2) ∧ 0 ≤ (4 · (𝐴 · 𝐶))) → ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))))
5440, 52, 53mp2an 690 . . 3 ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶))))
5539, 54mpbi 229 . 2 (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))
5610absrei 15266 . 2 (abs‘𝐵) = (√‘(𝐵↑2))
5732, 33, 42, 50sqrtmulii 15271 . . 3 (√‘(4 · (𝐴 · 𝐶))) = ((√‘4) · (√‘(𝐴 · 𝐶)))
58 sqrt4 15157 . . . 4 (√‘4) = 2
595, 15, 45, 48sqrtmulii 15271 . . . 4 (√‘(𝐴 · 𝐶)) = ((√‘𝐴) · (√‘𝐶))
6058, 59oveq12i 7369 . . 3 ((√‘4) · (√‘(𝐴 · 𝐶))) = (2 · ((√‘𝐴) · (√‘𝐶)))
6157, 60eqtr2i 2765 . 2 (2 · ((√‘𝐴) · (√‘𝐶))) = (√‘(4 · (𝐴 · 𝐶)))
6255, 56, 613brtr4i 5135 1 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wtru 1542  wcel 2106  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  cmin 11385  -cneg 11386  2c2 12208  4c4 12210  cexp 13967  ccj 14981  csqrt 15118  abscabs 15119  chba 29861   ·ih csp 29864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-hfvadd 29942  ax-hv0cl 29945  ax-hfvmul 29947  ax-hvmulass 29949  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-hvsub 29913
This theorem is referenced by:  normlem7  30058
  Copyright terms: Public domain W3C validator