HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Structured version   Visualization version   GIF version

Theorem normlem6 31051
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem6.7 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem6 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))

Proof of Theorem normlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9 𝐴 = (𝐺 ·ih 𝐺)
2 normlem1.3 . . . . . . . . . 10 𝐺 ∈ ℋ
3 hiidrcl 31031 . . . . . . . . . 10 (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ)
42, 3ax-mp 5 . . . . . . . . 9 (𝐺 ·ih 𝐺) ∈ ℝ
51, 4eqeltri 2825 . . . . . . . 8 𝐴 ∈ ℝ
65a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ ℝ)
7 normlem1.1 . . . . . . . . 9 𝑆 ∈ ℂ
8 normlem1.2 . . . . . . . . 9 𝐹 ∈ ℋ
9 normlem2.4 . . . . . . . . 9 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
107, 8, 2, 9normlem2 31047 . . . . . . . 8 𝐵 ∈ ℝ
1110a1i 11 . . . . . . 7 (⊤ → 𝐵 ∈ ℝ)
12 normlem3.6 . . . . . . . . 9 𝐶 = (𝐹 ·ih 𝐹)
13 hiidrcl 31031 . . . . . . . . . 10 (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ)
148, 13ax-mp 5 . . . . . . . . 9 (𝐹 ·ih 𝐹) ∈ ℝ
1512, 14eqeltri 2825 . . . . . . . 8 𝐶 ∈ ℝ
1615a1i 11 . . . . . . 7 (⊤ → 𝐶 ∈ ℝ)
17 oveq1 7397 . . . . . . . . . . . . 13 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝑥↑2) = (if(𝑥 ∈ ℝ, 𝑥, 0)↑2))
1817oveq2d 7406 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐴 · (𝑥↑2)) = (𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)))
19 oveq2 7398 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐵 · 𝑥) = (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0)))
2018, 19oveq12d 7408 . . . . . . . . . . 11 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))))
2120oveq1d 7405 . . . . . . . . . 10 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶))
2221breq2d 5122 . . . . . . . . 9 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)))
23 0re 11183 . . . . . . . . . . 11 0 ∈ ℝ
2423elimel 4561 . . . . . . . . . 10 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ ℝ
25 normlem6.7 . . . . . . . . . 10 (abs‘𝑆) = 1
267, 8, 2, 9, 1, 12, 24, 25normlem5 31050 . . . . . . . . 9 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)
2722, 26dedth 4550 . . . . . . . 8 (𝑥 ∈ ℝ → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
2827adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
296, 11, 16, 28discr 14212 . . . . . 6 (⊤ → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
3029mptru 1547 . . . . 5 ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0
3110resqcli 14158 . . . . . 6 (𝐵↑2) ∈ ℝ
32 4re 12277 . . . . . . 7 4 ∈ ℝ
335, 15remulcli 11197 . . . . . . 7 (𝐴 · 𝐶) ∈ ℝ
3432, 33remulcli 11197 . . . . . 6 (4 · (𝐴 · 𝐶)) ∈ ℝ
3531, 34, 23lesubadd2i 11745 . . . . 5 (((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0 ↔ (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0))
3630, 35mpbi 230 . . . 4 (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0)
3734recni 11195 . . . . 5 (4 · (𝐴 · 𝐶)) ∈ ℂ
3837addridi 11368 . . . 4 ((4 · (𝐴 · 𝐶)) + 0) = (4 · (𝐴 · 𝐶))
3936, 38breqtri 5135 . . 3 (𝐵↑2) ≤ (4 · (𝐴 · 𝐶))
4010sqge0i 14160 . . . 4 0 ≤ (𝐵↑2)
41 4pos 12300 . . . . . 6 0 < 4
4223, 32, 41ltleii 11304 . . . . 5 0 ≤ 4
43 hiidge0 31034 . . . . . . . 8 (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺))
442, 43ax-mp 5 . . . . . . 7 0 ≤ (𝐺 ·ih 𝐺)
4544, 1breqtrri 5137 . . . . . 6 0 ≤ 𝐴
46 hiidge0 31034 . . . . . . . 8 (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹))
478, 46ax-mp 5 . . . . . . 7 0 ≤ (𝐹 ·ih 𝐹)
4847, 12breqtrri 5137 . . . . . 6 0 ≤ 𝐶
495, 15mulge0i 11732 . . . . . 6 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶) → 0 ≤ (𝐴 · 𝐶))
5045, 48, 49mp2an 692 . . . . 5 0 ≤ (𝐴 · 𝐶)
5132, 33mulge0i 11732 . . . . 5 ((0 ≤ 4 ∧ 0 ≤ (𝐴 · 𝐶)) → 0 ≤ (4 · (𝐴 · 𝐶)))
5242, 50, 51mp2an 692 . . . 4 0 ≤ (4 · (𝐴 · 𝐶))
5331, 34sqrtlei 15362 . . . 4 ((0 ≤ (𝐵↑2) ∧ 0 ≤ (4 · (𝐴 · 𝐶))) → ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))))
5440, 52, 53mp2an 692 . . 3 ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶))))
5539, 54mpbi 230 . 2 (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))
5610absrei 15355 . 2 (abs‘𝐵) = (√‘(𝐵↑2))
5732, 33, 42, 50sqrtmulii 15360 . . 3 (√‘(4 · (𝐴 · 𝐶))) = ((√‘4) · (√‘(𝐴 · 𝐶)))
58 sqrt4 15245 . . . 4 (√‘4) = 2
595, 15, 45, 48sqrtmulii 15360 . . . 4 (√‘(𝐴 · 𝐶)) = ((√‘𝐴) · (√‘𝐶))
6058, 59oveq12i 7402 . . 3 ((√‘4) · (√‘(𝐴 · 𝐶))) = (2 · ((√‘𝐴) · (√‘𝐶)))
6157, 60eqtr2i 2754 . 2 (2 · ((√‘𝐴) · (√‘𝐶))) = (√‘(4 · (𝐴 · 𝐶)))
6255, 56, 613brtr4i 5140 1 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wtru 1541  wcel 2109  ifcif 4491   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  -cneg 11413  2c2 12248  4c4 12250  cexp 14033  ccj 15069  csqrt 15206  abscabs 15207  chba 30855   ·ih csp 30858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-hfvadd 30936  ax-hv0cl 30939  ax-hfvmul 30941  ax-hvmulass 30943  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-hvsub 30907
This theorem is referenced by:  normlem7  31052
  Copyright terms: Public domain W3C validator