HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Structured version   Visualization version   GIF version

Theorem normlem6 31096
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem6.7 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem6 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))

Proof of Theorem normlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9 𝐴 = (𝐺 ·ih 𝐺)
2 normlem1.3 . . . . . . . . . 10 𝐺 ∈ ℋ
3 hiidrcl 31076 . . . . . . . . . 10 (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ)
42, 3ax-mp 5 . . . . . . . . 9 (𝐺 ·ih 𝐺) ∈ ℝ
51, 4eqeltri 2830 . . . . . . . 8 𝐴 ∈ ℝ
65a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ ℝ)
7 normlem1.1 . . . . . . . . 9 𝑆 ∈ ℂ
8 normlem1.2 . . . . . . . . 9 𝐹 ∈ ℋ
9 normlem2.4 . . . . . . . . 9 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
107, 8, 2, 9normlem2 31092 . . . . . . . 8 𝐵 ∈ ℝ
1110a1i 11 . . . . . . 7 (⊤ → 𝐵 ∈ ℝ)
12 normlem3.6 . . . . . . . . 9 𝐶 = (𝐹 ·ih 𝐹)
13 hiidrcl 31076 . . . . . . . . . 10 (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ)
148, 13ax-mp 5 . . . . . . . . 9 (𝐹 ·ih 𝐹) ∈ ℝ
1512, 14eqeltri 2830 . . . . . . . 8 𝐶 ∈ ℝ
1615a1i 11 . . . . . . 7 (⊤ → 𝐶 ∈ ℝ)
17 oveq1 7412 . . . . . . . . . . . . 13 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝑥↑2) = (if(𝑥 ∈ ℝ, 𝑥, 0)↑2))
1817oveq2d 7421 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐴 · (𝑥↑2)) = (𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)))
19 oveq2 7413 . . . . . . . . . . . 12 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (𝐵 · 𝑥) = (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0)))
2018, 19oveq12d 7423 . . . . . . . . . . 11 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))))
2120oveq1d 7420 . . . . . . . . . 10 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶))
2221breq2d 5131 . . . . . . . . 9 (𝑥 = if(𝑥 ∈ ℝ, 𝑥, 0) → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)))
23 0re 11237 . . . . . . . . . . 11 0 ∈ ℝ
2423elimel 4570 . . . . . . . . . 10 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ ℝ
25 normlem6.7 . . . . . . . . . 10 (abs‘𝑆) = 1
267, 8, 2, 9, 1, 12, 24, 25normlem5 31095 . . . . . . . . 9 0 ≤ (((𝐴 · (if(𝑥 ∈ ℝ, 𝑥, 0)↑2)) + (𝐵 · if(𝑥 ∈ ℝ, 𝑥, 0))) + 𝐶)
2722, 26dedth 4559 . . . . . . . 8 (𝑥 ∈ ℝ → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
2827adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
296, 11, 16, 28discr 14258 . . . . . 6 (⊤ → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
3029mptru 1547 . . . . 5 ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0
3110resqcli 14204 . . . . . 6 (𝐵↑2) ∈ ℝ
32 4re 12324 . . . . . . 7 4 ∈ ℝ
335, 15remulcli 11251 . . . . . . 7 (𝐴 · 𝐶) ∈ ℝ
3432, 33remulcli 11251 . . . . . 6 (4 · (𝐴 · 𝐶)) ∈ ℝ
3531, 34, 23lesubadd2i 11797 . . . . 5 (((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0 ↔ (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0))
3630, 35mpbi 230 . . . 4 (𝐵↑2) ≤ ((4 · (𝐴 · 𝐶)) + 0)
3734recni 11249 . . . . 5 (4 · (𝐴 · 𝐶)) ∈ ℂ
3837addridi 11422 . . . 4 ((4 · (𝐴 · 𝐶)) + 0) = (4 · (𝐴 · 𝐶))
3936, 38breqtri 5144 . . 3 (𝐵↑2) ≤ (4 · (𝐴 · 𝐶))
4010sqge0i 14206 . . . 4 0 ≤ (𝐵↑2)
41 4pos 12347 . . . . . 6 0 < 4
4223, 32, 41ltleii 11358 . . . . 5 0 ≤ 4
43 hiidge0 31079 . . . . . . . 8 (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺))
442, 43ax-mp 5 . . . . . . 7 0 ≤ (𝐺 ·ih 𝐺)
4544, 1breqtrri 5146 . . . . . 6 0 ≤ 𝐴
46 hiidge0 31079 . . . . . . . 8 (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹))
478, 46ax-mp 5 . . . . . . 7 0 ≤ (𝐹 ·ih 𝐹)
4847, 12breqtrri 5146 . . . . . 6 0 ≤ 𝐶
495, 15mulge0i 11784 . . . . . 6 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶) → 0 ≤ (𝐴 · 𝐶))
5045, 48, 49mp2an 692 . . . . 5 0 ≤ (𝐴 · 𝐶)
5132, 33mulge0i 11784 . . . . 5 ((0 ≤ 4 ∧ 0 ≤ (𝐴 · 𝐶)) → 0 ≤ (4 · (𝐴 · 𝐶)))
5242, 50, 51mp2an 692 . . . 4 0 ≤ (4 · (𝐴 · 𝐶))
5331, 34sqrtlei 15407 . . . 4 ((0 ≤ (𝐵↑2) ∧ 0 ≤ (4 · (𝐴 · 𝐶))) → ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))))
5440, 52, 53mp2an 692 . . 3 ((𝐵↑2) ≤ (4 · (𝐴 · 𝐶)) ↔ (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶))))
5539, 54mpbi 230 . 2 (√‘(𝐵↑2)) ≤ (√‘(4 · (𝐴 · 𝐶)))
5610absrei 15400 . 2 (abs‘𝐵) = (√‘(𝐵↑2))
5732, 33, 42, 50sqrtmulii 15405 . . 3 (√‘(4 · (𝐴 · 𝐶))) = ((√‘4) · (√‘(𝐴 · 𝐶)))
58 sqrt4 15291 . . . 4 (√‘4) = 2
595, 15, 45, 48sqrtmulii 15405 . . . 4 (√‘(𝐴 · 𝐶)) = ((√‘𝐴) · (√‘𝐶))
6058, 59oveq12i 7417 . . 3 ((√‘4) · (√‘(𝐴 · 𝐶))) = (2 · ((√‘𝐴) · (√‘𝐶)))
6157, 60eqtr2i 2759 . 2 (2 · ((√‘𝐴) · (√‘𝐶))) = (√‘(4 · (𝐴 · 𝐶)))
6255, 56, 613brtr4i 5149 1 (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wtru 1541  wcel 2108  ifcif 4500   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  cmin 11466  -cneg 11467  2c2 12295  4c4 12297  cexp 14079  ccj 15115  csqrt 15252  abscabs 15253  chba 30900   ·ih csp 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-hfvadd 30981  ax-hv0cl 30984  ax-hfvmul 30986  ax-hvmulass 30988  ax-hvmul0 30991  ax-hfi 31060  ax-his1 31063  ax-his2 31064  ax-his3 31065  ax-his4 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-hvsub 30952
This theorem is referenced by:  normlem7  31097
  Copyright terms: Public domain W3C validator