HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Structured version   Visualization version   GIF version

Theorem normlem6 30368
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 ๐‘† โˆˆ โ„‚
normlem1.2 ๐น โˆˆ โ„‹
normlem1.3 ๐บ โˆˆ โ„‹
normlem2.4 ๐ต = -(((โˆ—โ€˜๐‘†) ยท (๐น ยทih ๐บ)) + (๐‘† ยท (๐บ ยทih ๐น)))
normlem3.5 ๐ด = (๐บ ยทih ๐บ)
normlem3.6 ๐ถ = (๐น ยทih ๐น)
normlem6.7 (absโ€˜๐‘†) = 1
Assertion
Ref Expression
normlem6 (absโ€˜๐ต) โ‰ค (2 ยท ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ถ)))

Proof of Theorem normlem6
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9 ๐ด = (๐บ ยทih ๐บ)
2 normlem1.3 . . . . . . . . . 10 ๐บ โˆˆ โ„‹
3 hiidrcl 30348 . . . . . . . . . 10 (๐บ โˆˆ โ„‹ โ†’ (๐บ ยทih ๐บ) โˆˆ โ„)
42, 3ax-mp 5 . . . . . . . . 9 (๐บ ยทih ๐บ) โˆˆ โ„
51, 4eqeltri 2830 . . . . . . . 8 ๐ด โˆˆ โ„
65a1i 11 . . . . . . 7 (โŠค โ†’ ๐ด โˆˆ โ„)
7 normlem1.1 . . . . . . . . 9 ๐‘† โˆˆ โ„‚
8 normlem1.2 . . . . . . . . 9 ๐น โˆˆ โ„‹
9 normlem2.4 . . . . . . . . 9 ๐ต = -(((โˆ—โ€˜๐‘†) ยท (๐น ยทih ๐บ)) + (๐‘† ยท (๐บ ยทih ๐น)))
107, 8, 2, 9normlem2 30364 . . . . . . . 8 ๐ต โˆˆ โ„
1110a1i 11 . . . . . . 7 (โŠค โ†’ ๐ต โˆˆ โ„)
12 normlem3.6 . . . . . . . . 9 ๐ถ = (๐น ยทih ๐น)
13 hiidrcl 30348 . . . . . . . . . 10 (๐น โˆˆ โ„‹ โ†’ (๐น ยทih ๐น) โˆˆ โ„)
148, 13ax-mp 5 . . . . . . . . 9 (๐น ยทih ๐น) โˆˆ โ„
1512, 14eqeltri 2830 . . . . . . . 8 ๐ถ โˆˆ โ„
1615a1i 11 . . . . . . 7 (โŠค โ†’ ๐ถ โˆˆ โ„)
17 oveq1 7416 . . . . . . . . . . . . 13 (๐‘ฅ = if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0) โ†’ (๐‘ฅโ†‘2) = (if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0)โ†‘2))
1817oveq2d 7425 . . . . . . . . . . . 12 (๐‘ฅ = if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0) โ†’ (๐ด ยท (๐‘ฅโ†‘2)) = (๐ด ยท (if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0)โ†‘2)))
19 oveq2 7417 . . . . . . . . . . . 12 (๐‘ฅ = if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0) โ†’ (๐ต ยท ๐‘ฅ) = (๐ต ยท if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0)))
2018, 19oveq12d 7427 . . . . . . . . . . 11 (๐‘ฅ = if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0) โ†’ ((๐ด ยท (๐‘ฅโ†‘2)) + (๐ต ยท ๐‘ฅ)) = ((๐ด ยท (if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0)โ†‘2)) + (๐ต ยท if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0))))
2120oveq1d 7424 . . . . . . . . . 10 (๐‘ฅ = if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0) โ†’ (((๐ด ยท (๐‘ฅโ†‘2)) + (๐ต ยท ๐‘ฅ)) + ๐ถ) = (((๐ด ยท (if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0)โ†‘2)) + (๐ต ยท if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0))) + ๐ถ))
2221breq2d 5161 . . . . . . . . 9 (๐‘ฅ = if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0) โ†’ (0 โ‰ค (((๐ด ยท (๐‘ฅโ†‘2)) + (๐ต ยท ๐‘ฅ)) + ๐ถ) โ†” 0 โ‰ค (((๐ด ยท (if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0)โ†‘2)) + (๐ต ยท if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0))) + ๐ถ)))
23 0re 11216 . . . . . . . . . . 11 0 โˆˆ โ„
2423elimel 4598 . . . . . . . . . 10 if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0) โˆˆ โ„
25 normlem6.7 . . . . . . . . . 10 (absโ€˜๐‘†) = 1
267, 8, 2, 9, 1, 12, 24, 25normlem5 30367 . . . . . . . . 9 0 โ‰ค (((๐ด ยท (if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0)โ†‘2)) + (๐ต ยท if(๐‘ฅ โˆˆ โ„, ๐‘ฅ, 0))) + ๐ถ)
2722, 26dedth 4587 . . . . . . . 8 (๐‘ฅ โˆˆ โ„ โ†’ 0 โ‰ค (((๐ด ยท (๐‘ฅโ†‘2)) + (๐ต ยท ๐‘ฅ)) + ๐ถ))
2827adantl 483 . . . . . . 7 ((โŠค โˆง ๐‘ฅ โˆˆ โ„) โ†’ 0 โ‰ค (((๐ด ยท (๐‘ฅโ†‘2)) + (๐ต ยท ๐‘ฅ)) + ๐ถ))
296, 11, 16, 28discr 14203 . . . . . 6 (โŠค โ†’ ((๐ตโ†‘2) โˆ’ (4 ยท (๐ด ยท ๐ถ))) โ‰ค 0)
3029mptru 1549 . . . . 5 ((๐ตโ†‘2) โˆ’ (4 ยท (๐ด ยท ๐ถ))) โ‰ค 0
3110resqcli 14150 . . . . . 6 (๐ตโ†‘2) โˆˆ โ„
32 4re 12296 . . . . . . 7 4 โˆˆ โ„
335, 15remulcli 11230 . . . . . . 7 (๐ด ยท ๐ถ) โˆˆ โ„
3432, 33remulcli 11230 . . . . . 6 (4 ยท (๐ด ยท ๐ถ)) โˆˆ โ„
3531, 34, 23lesubadd2i 11774 . . . . 5 (((๐ตโ†‘2) โˆ’ (4 ยท (๐ด ยท ๐ถ))) โ‰ค 0 โ†” (๐ตโ†‘2) โ‰ค ((4 ยท (๐ด ยท ๐ถ)) + 0))
3630, 35mpbi 229 . . . 4 (๐ตโ†‘2) โ‰ค ((4 ยท (๐ด ยท ๐ถ)) + 0)
3734recni 11228 . . . . 5 (4 ยท (๐ด ยท ๐ถ)) โˆˆ โ„‚
3837addridi 11401 . . . 4 ((4 ยท (๐ด ยท ๐ถ)) + 0) = (4 ยท (๐ด ยท ๐ถ))
3936, 38breqtri 5174 . . 3 (๐ตโ†‘2) โ‰ค (4 ยท (๐ด ยท ๐ถ))
4010sqge0i 14152 . . . 4 0 โ‰ค (๐ตโ†‘2)
41 4pos 12319 . . . . . 6 0 < 4
4223, 32, 41ltleii 11337 . . . . 5 0 โ‰ค 4
43 hiidge0 30351 . . . . . . . 8 (๐บ โˆˆ โ„‹ โ†’ 0 โ‰ค (๐บ ยทih ๐บ))
442, 43ax-mp 5 . . . . . . 7 0 โ‰ค (๐บ ยทih ๐บ)
4544, 1breqtrri 5176 . . . . . 6 0 โ‰ค ๐ด
46 hiidge0 30351 . . . . . . . 8 (๐น โˆˆ โ„‹ โ†’ 0 โ‰ค (๐น ยทih ๐น))
478, 46ax-mp 5 . . . . . . 7 0 โ‰ค (๐น ยทih ๐น)
4847, 12breqtrri 5176 . . . . . 6 0 โ‰ค ๐ถ
495, 15mulge0i 11761 . . . . . 6 ((0 โ‰ค ๐ด โˆง 0 โ‰ค ๐ถ) โ†’ 0 โ‰ค (๐ด ยท ๐ถ))
5045, 48, 49mp2an 691 . . . . 5 0 โ‰ค (๐ด ยท ๐ถ)
5132, 33mulge0i 11761 . . . . 5 ((0 โ‰ค 4 โˆง 0 โ‰ค (๐ด ยท ๐ถ)) โ†’ 0 โ‰ค (4 ยท (๐ด ยท ๐ถ)))
5242, 50, 51mp2an 691 . . . 4 0 โ‰ค (4 ยท (๐ด ยท ๐ถ))
5331, 34sqrtlei 15335 . . . 4 ((0 โ‰ค (๐ตโ†‘2) โˆง 0 โ‰ค (4 ยท (๐ด ยท ๐ถ))) โ†’ ((๐ตโ†‘2) โ‰ค (4 ยท (๐ด ยท ๐ถ)) โ†” (โˆšโ€˜(๐ตโ†‘2)) โ‰ค (โˆšโ€˜(4 ยท (๐ด ยท ๐ถ)))))
5440, 52, 53mp2an 691 . . 3 ((๐ตโ†‘2) โ‰ค (4 ยท (๐ด ยท ๐ถ)) โ†” (โˆšโ€˜(๐ตโ†‘2)) โ‰ค (โˆšโ€˜(4 ยท (๐ด ยท ๐ถ))))
5539, 54mpbi 229 . 2 (โˆšโ€˜(๐ตโ†‘2)) โ‰ค (โˆšโ€˜(4 ยท (๐ด ยท ๐ถ)))
5610absrei 15328 . 2 (absโ€˜๐ต) = (โˆšโ€˜(๐ตโ†‘2))
5732, 33, 42, 50sqrtmulii 15333 . . 3 (โˆšโ€˜(4 ยท (๐ด ยท ๐ถ))) = ((โˆšโ€˜4) ยท (โˆšโ€˜(๐ด ยท ๐ถ)))
58 sqrt4 15219 . . . 4 (โˆšโ€˜4) = 2
595, 15, 45, 48sqrtmulii 15333 . . . 4 (โˆšโ€˜(๐ด ยท ๐ถ)) = ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ถ))
6058, 59oveq12i 7421 . . 3 ((โˆšโ€˜4) ยท (โˆšโ€˜(๐ด ยท ๐ถ))) = (2 ยท ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ถ)))
6157, 60eqtr2i 2762 . 2 (2 ยท ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ถ))) = (โˆšโ€˜(4 ยท (๐ด ยท ๐ถ)))
6255, 56, 613brtr4i 5179 1 (absโ€˜๐ต) โ‰ค (2 ยท ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ถ)))
Colors of variables: wff setvar class
Syntax hints:   โ†” wb 205   = wceq 1542  โŠคwtru 1543   โˆˆ wcel 2107  ifcif 4529   class class class wbr 5149  โ€˜cfv 6544  (class class class)co 7409  โ„‚cc 11108  โ„cr 11109  0cc0 11110  1c1 11111   + caddc 11113   ยท cmul 11115   โ‰ค cle 11249   โˆ’ cmin 11444  -cneg 11445  2c2 12267  4c4 12269  โ†‘cexp 14027  โˆ—ccj 15043  โˆšcsqrt 15180  abscabs 15181   โ„‹chba 30172   ยทih csp 30175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-hfvadd 30253  ax-hv0cl 30256  ax-hfvmul 30258  ax-hvmulass 30260  ax-hvmul0 30263  ax-hfi 30332  ax-his1 30335  ax-his2 30336  ax-his3 30337  ax-his4 30338
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-hvsub 30224
This theorem is referenced by:  normlem7  30369
  Copyright terms: Public domain W3C validator