Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > declt | Structured version Visualization version GIF version |
Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
declt.a | ⊢ 𝐴 ∈ ℕ0 |
declt.b | ⊢ 𝐵 ∈ ℕ0 |
declt.c | ⊢ 𝐶 ∈ ℕ |
declt.l | ⊢ 𝐵 < 𝐶 |
Ref | Expression |
---|---|
declt | ⊢ ;𝐴𝐵 < ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn 12453 | . . 3 ⊢ ;10 ∈ ℕ | |
2 | declt.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
3 | declt.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
4 | declt.c | . . 3 ⊢ 𝐶 ∈ ℕ | |
5 | declt.l | . . 3 ⊢ 𝐵 < 𝐶 | |
6 | 1, 2, 3, 4, 5 | numlt 12462 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) < ((;10 · 𝐴) + 𝐶) |
7 | dfdec10 12440 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
8 | dfdec10 12440 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
9 | 6, 7, 8 | 3brtr4i 5104 | 1 ⊢ ;𝐴𝐵 < ;𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 ℕcn 11973 ℕ0cn0 12233 ;cdc 12437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-dec 12438 |
This theorem is referenced by: 23prm 16820 37prm 16822 43prm 16823 83prm 16824 163prm 16826 317prm 16827 1259prm 16837 2503lem3 16840 plendxnocndx 17094 slotsdifdsndx 17104 slotsdifunifndx 17111 odrngstr 17113 slotsbhcdif 17125 slotsbhcdifOLD 17126 slotsdifplendx2 17127 slotsdifocndx 17128 imasvalstr 17162 prdsvalstr 17163 oppchomfvalOLD 17424 oppcbasOLD 17429 resccoOLD 17546 catstr 17674 ipostr 18247 cnfldstr 20599 cnfldfunALTOLD 20611 thlleOLD 20904 log2ub 26099 bpos1 26431 slotsinbpsd 26802 slotslnbpsd 26803 lngndxnitvndx 26804 trkgstr 26805 ttgvalOLD 27237 ttglemOLD 27239 ttgdsOLD 27248 eengstr 27348 hgt750lem 32631 3lexlogpow5ineq1 40062 3lexlogpow5ineq2 40063 3lexlogpow2ineq2 40067 257prm 45013 fmtno4nprmfac193 45026 31prm 45049 127prm 45051 evengpoap3 45251 nnsum4primesevenALTV 45253 tgblthelfgott 45267 prstclevalOLD 46350 prstcocvalOLD 46353 |
Copyright terms: Public domain | W3C validator |