![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2ltsuc | Structured version Visualization version GIF version |
Description: Comparing a decimal fraction with the next integer. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
dp2ltsuc.1 | ⊢ 𝐵 < ;10 |
dp2ltsuc.2 | ⊢ (𝐴 + 1) = 𝐶 |
Ref | Expression |
---|---|
dp2ltsuc | ⊢ _𝐴𝐵 < 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp2ltsuc.1 | . . . . 5 ⊢ 𝐵 < ;10 | |
2 | dp2lt.b | . . . . . . 7 ⊢ 𝐵 ∈ ℝ+ | |
3 | rpre 13065 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
5 | 10re 12777 | . . . . . 6 ⊢ ;10 ∈ ℝ | |
6 | 10pos 12775 | . . . . . 6 ⊢ 0 < ;10 | |
7 | 4, 5, 5, 6 | ltdiv1ii 12224 | . . . . 5 ⊢ (𝐵 < ;10 ↔ (𝐵 / ;10) < (;10 / ;10)) |
8 | 1, 7 | mpbi 230 | . . . 4 ⊢ (𝐵 / ;10) < (;10 / ;10) |
9 | 5 | recni 11304 | . . . . 5 ⊢ ;10 ∈ ℂ |
10 | 10nn 12774 | . . . . . 6 ⊢ ;10 ∈ ℕ | |
11 | 10 | nnne0i 12333 | . . . . 5 ⊢ ;10 ≠ 0 |
12 | 9, 11 | dividi 12027 | . . . 4 ⊢ (;10 / ;10) = 1 |
13 | 8, 12 | breqtri 5191 | . . 3 ⊢ (𝐵 / ;10) < 1 |
14 | 4, 5, 11 | redivcli 12061 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
15 | 1re 11290 | . . . 4 ⊢ 1 ∈ ℝ | |
16 | dp2lt.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
17 | 16 | nn0rei 12564 | . . . 4 ⊢ 𝐴 ∈ ℝ |
18 | 14, 15, 17 | ltadd2i 11421 | . . 3 ⊢ ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1)) |
19 | 13, 18 | mpbi 230 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1) |
20 | df-dp2 32836 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
21 | dp2ltsuc.2 | . . 3 ⊢ (𝐴 + 1) = 𝐶 | |
22 | 21 | eqcomi 2749 | . 2 ⊢ 𝐶 = (𝐴 + 1) |
23 | 19, 20, 22 | 3brtr4i 5196 | 1 ⊢ _𝐴𝐵 < 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 / cdiv 11947 ℕ0cn0 12553 ;cdc 12758 ℝ+crp 13057 _cdp2 32835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 df-rp 13058 df-dp2 32836 |
This theorem is referenced by: hgt750lem2 34629 |
Copyright terms: Public domain | W3C validator |