Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2ltsuc Structured version   Visualization version   GIF version

Theorem dp2ltsuc 32861
Description: Comparing a decimal fraction with the next integer. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dp2lt.a 𝐴 ∈ ℕ0
dp2lt.b 𝐵 ∈ ℝ+
dp2ltsuc.1 𝐵 < 10
dp2ltsuc.2 (𝐴 + 1) = 𝐶
Assertion
Ref Expression
dp2ltsuc 𝐴𝐵 < 𝐶

Proof of Theorem dp2ltsuc
StepHypRef Expression
1 dp2ltsuc.1 . . . . 5 𝐵 < 10
2 dp2lt.b . . . . . . 7 𝐵 ∈ ℝ+
3 rpre 12896 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
42, 3ax-mp 5 . . . . . 6 𝐵 ∈ ℝ
5 10re 12604 . . . . . 6 10 ∈ ℝ
6 10pos 12602 . . . . . 6 0 < 10
74, 5, 5, 6ltdiv1ii 12048 . . . . 5 (𝐵 < 10 ↔ (𝐵 / 10) < (10 / 10))
81, 7mpbi 230 . . . 4 (𝐵 / 10) < (10 / 10)
95recni 11123 . . . . 5 10 ∈ ℂ
10 10nn 12601 . . . . . 6 10 ∈ ℕ
1110nnne0i 12162 . . . . 5 10 ≠ 0
129, 11dividi 11851 . . . 4 (10 / 10) = 1
138, 12breqtri 5116 . . 3 (𝐵 / 10) < 1
144, 5, 11redivcli 11885 . . . 4 (𝐵 / 10) ∈ ℝ
15 1re 11109 . . . 4 1 ∈ ℝ
16 dp2lt.a . . . . 5 𝐴 ∈ ℕ0
1716nn0rei 12389 . . . 4 𝐴 ∈ ℝ
1814, 15, 17ltadd2i 11241 . . 3 ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1))
1913, 18mpbi 230 . 2 (𝐴 + (𝐵 / 10)) < (𝐴 + 1)
20 df-dp2 32847 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
21 dp2ltsuc.2 . . 3 (𝐴 + 1) = 𝐶
2221eqcomi 2740 . 2 𝐶 = (𝐴 + 1)
2319, 20, 223brtr4i 5121 1 𝐴𝐵 < 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111   class class class wbr 5091  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   < clt 11143   / cdiv 11771  0cn0 12378  cdc 12585  +crp 12887  cdp2 32846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-dec 12586  df-rp 12888  df-dp2 32847
This theorem is referenced by:  hgt750lem2  34660
  Copyright terms: Public domain W3C validator