Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2ltsuc Structured version   Visualization version   GIF version

Theorem dp2ltsuc 30128
Description: Comparing a decimal fraction with the next integer. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dp2lt.a 𝐴 ∈ ℕ0
dp2lt.b 𝐵 ∈ ℝ+
dp2ltsuc.1 𝐵 < 10
dp2ltsuc.2 (𝐴 + 1) = 𝐶
Assertion
Ref Expression
dp2ltsuc 𝐴𝐵 < 𝐶

Proof of Theorem dp2ltsuc
StepHypRef Expression
1 dp2ltsuc.1 . . . . 5 𝐵 < 10
2 dp2lt.b . . . . . . 7 𝐵 ∈ ℝ+
3 rpre 12120 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
42, 3ax-mp 5 . . . . . 6 𝐵 ∈ ℝ
5 10re 11840 . . . . . 6 10 ∈ ℝ
6 10pos 11838 . . . . . 6 0 < 10
74, 5, 5, 6ltdiv1ii 11283 . . . . 5 (𝐵 < 10 ↔ (𝐵 / 10) < (10 / 10))
81, 7mpbi 222 . . . 4 (𝐵 / 10) < (10 / 10)
95recni 10371 . . . . 5 10 ∈ ℂ
10 10nn 11837 . . . . . 6 10 ∈ ℕ
1110nnne0i 11391 . . . . 5 10 ≠ 0
129, 11dividi 11084 . . . 4 (10 / 10) = 1
138, 12breqtri 4898 . . 3 (𝐵 / 10) < 1
144, 5, 11redivcli 11118 . . . 4 (𝐵 / 10) ∈ ℝ
15 1re 10356 . . . 4 1 ∈ ℝ
16 dp2lt.a . . . . 5 𝐴 ∈ ℕ0
1716nn0rei 11630 . . . 4 𝐴 ∈ ℝ
1814, 15, 17ltadd2i 10487 . . 3 ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1))
1913, 18mpbi 222 . 2 (𝐴 + (𝐵 / 10)) < (𝐴 + 1)
20 df-dp2 30114 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
21 dp2ltsuc.2 . . 3 (𝐴 + 1) = 𝐶
2221eqcomi 2834 . 2 𝐶 = (𝐴 + 1)
2319, 20, 223brtr4i 4903 1 𝐴𝐵 < 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1656  wcel 2164   class class class wbr 4873  (class class class)co 6905  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   < clt 10391   / cdiv 11009  0cn0 11618  cdc 11821  +crp 12112  cdp2 30113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-dec 11822  df-rp 12113  df-dp2 30114
This theorem is referenced by:  hgt750lem2  31268
  Copyright terms: Public domain W3C validator