Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt | Structured version Visualization version GIF version |
Description: Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
dp2lt.c | ⊢ 𝐶 ∈ ℝ+ |
dp2lt.l | ⊢ 𝐵 < 𝐶 |
Ref | Expression |
---|---|
dp2lt | ⊢ _𝐴𝐵 < _𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12450 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
2 | dp2lt.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
3 | 1, 2 | sselii 3891 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
4 | 10re 12169 | . . . . 5 ⊢ ;10 ∈ ℝ | |
5 | 0re 10694 | . . . . . 6 ⊢ 0 ∈ ℝ | |
6 | 10pos 12167 | . . . . . 6 ⊢ 0 < ;10 | |
7 | 5, 6 | gtneii 10803 | . . . . 5 ⊢ ;10 ≠ 0 |
8 | redivcl 11410 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐵 / ;10) ∈ ℝ) | |
9 | 3, 4, 7, 8 | mp3an 1458 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
10 | dp2lt.c | . . . . . 6 ⊢ 𝐶 ∈ ℝ+ | |
11 | 1, 10 | sselii 3891 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
12 | redivcl 11410 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐶 / ;10) ∈ ℝ) | |
13 | 11, 4, 7, 12 | mp3an 1458 | . . . 4 ⊢ (𝐶 / ;10) ∈ ℝ |
14 | dp2lt.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
15 | 14 | nn0rei 11958 | . . . 4 ⊢ 𝐴 ∈ ℝ |
16 | 9, 13, 15 | 3pm3.2i 1336 | . . 3 ⊢ ((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) |
17 | dp2lt.l | . . . 4 ⊢ 𝐵 < 𝐶 | |
18 | 4, 6 | pm3.2i 474 | . . . . 5 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
19 | ltdiv1 11555 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (;10 ∈ ℝ ∧ 0 < ;10)) → (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10))) | |
20 | 3, 11, 18, 19 | mp3an 1458 | . . . 4 ⊢ (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10)) |
21 | 17, 20 | mpbi 233 | . . 3 ⊢ (𝐵 / ;10) < (𝐶 / ;10) |
22 | axltadd 10765 | . . . 4 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < (𝐶 / ;10) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)))) | |
23 | 22 | imp 410 | . . 3 ⊢ ((((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 / ;10) < (𝐶 / ;10)) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10))) |
24 | 16, 21, 23 | mp2an 691 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)) |
25 | df-dp2 30683 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
26 | df-dp2 30683 | . 2 ⊢ _𝐴𝐶 = (𝐴 + (𝐶 / ;10)) | |
27 | 24, 25, 26 | 3brtr4i 5066 | 1 ⊢ _𝐴𝐵 < _𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5036 (class class class)co 7156 ℝcr 10587 0cc0 10588 1c1 10589 + caddc 10591 < clt 10726 / cdiv 11348 ℕ0cn0 11947 ;cdc 12150 ℝ+crp 12443 _cdp2 30682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-dec 12151 df-rp 12444 df-dp2 30683 |
This theorem is referenced by: dplt 30715 hgt750lem2 32164 |
Copyright terms: Public domain | W3C validator |