Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt | Structured version Visualization version GIF version |
Description: Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
dp2lt.c | ⊢ 𝐶 ∈ ℝ+ |
dp2lt.l | ⊢ 𝐵 < 𝐶 |
Ref | Expression |
---|---|
dp2lt | ⊢ _𝐴𝐵 < _𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12783 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
2 | dp2lt.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
3 | 1, 2 | sselii 3923 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
4 | 10re 12502 | . . . . 5 ⊢ ;10 ∈ ℝ | |
5 | 0re 11023 | . . . . . 6 ⊢ 0 ∈ ℝ | |
6 | 10pos 12500 | . . . . . 6 ⊢ 0 < ;10 | |
7 | 5, 6 | gtneii 11133 | . . . . 5 ⊢ ;10 ≠ 0 |
8 | redivcl 11740 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐵 / ;10) ∈ ℝ) | |
9 | 3, 4, 7, 8 | mp3an 1461 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
10 | dp2lt.c | . . . . . 6 ⊢ 𝐶 ∈ ℝ+ | |
11 | 1, 10 | sselii 3923 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
12 | redivcl 11740 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐶 / ;10) ∈ ℝ) | |
13 | 11, 4, 7, 12 | mp3an 1461 | . . . 4 ⊢ (𝐶 / ;10) ∈ ℝ |
14 | dp2lt.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
15 | 14 | nn0rei 12290 | . . . 4 ⊢ 𝐴 ∈ ℝ |
16 | 9, 13, 15 | 3pm3.2i 1339 | . . 3 ⊢ ((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) |
17 | dp2lt.l | . . . 4 ⊢ 𝐵 < 𝐶 | |
18 | 4, 6 | pm3.2i 472 | . . . . 5 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
19 | ltdiv1 11885 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (;10 ∈ ℝ ∧ 0 < ;10)) → (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10))) | |
20 | 3, 11, 18, 19 | mp3an 1461 | . . . 4 ⊢ (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10)) |
21 | 17, 20 | mpbi 229 | . . 3 ⊢ (𝐵 / ;10) < (𝐶 / ;10) |
22 | axltadd 11094 | . . . 4 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < (𝐶 / ;10) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)))) | |
23 | 22 | imp 408 | . . 3 ⊢ ((((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 / ;10) < (𝐶 / ;10)) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10))) |
24 | 16, 21, 23 | mp2an 690 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)) |
25 | df-dp2 31191 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
26 | df-dp2 31191 | . 2 ⊢ _𝐴𝐶 = (𝐴 + (𝐶 / ;10)) | |
27 | 24, 25, 26 | 3brtr4i 5111 | 1 ⊢ _𝐴𝐵 < _𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 (class class class)co 7307 ℝcr 10916 0cc0 10917 1c1 10918 + caddc 10920 < clt 11055 / cdiv 11678 ℕ0cn0 12279 ;cdc 12483 ℝ+crp 12776 _cdp2 31190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-dec 12484 df-rp 12777 df-dp2 31191 |
This theorem is referenced by: dplt 31223 hgt750lem2 32677 |
Copyright terms: Public domain | W3C validator |