![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt | Structured version Visualization version GIF version |
Description: Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
dp2lt.c | ⊢ 𝐶 ∈ ℝ+ |
dp2lt.l | ⊢ 𝐵 < 𝐶 |
Ref | Expression |
---|---|
dp2lt | ⊢ _𝐴𝐵 < _𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12977 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
2 | dp2lt.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
3 | 1, 2 | sselii 3978 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
4 | 10re 12692 | . . . . 5 ⊢ ;10 ∈ ℝ | |
5 | 0re 11212 | . . . . . 6 ⊢ 0 ∈ ℝ | |
6 | 10pos 12690 | . . . . . 6 ⊢ 0 < ;10 | |
7 | 5, 6 | gtneii 11322 | . . . . 5 ⊢ ;10 ≠ 0 |
8 | redivcl 11929 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐵 / ;10) ∈ ℝ) | |
9 | 3, 4, 7, 8 | mp3an 1461 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
10 | dp2lt.c | . . . . . 6 ⊢ 𝐶 ∈ ℝ+ | |
11 | 1, 10 | sselii 3978 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
12 | redivcl 11929 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐶 / ;10) ∈ ℝ) | |
13 | 11, 4, 7, 12 | mp3an 1461 | . . . 4 ⊢ (𝐶 / ;10) ∈ ℝ |
14 | dp2lt.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
15 | 14 | nn0rei 12479 | . . . 4 ⊢ 𝐴 ∈ ℝ |
16 | 9, 13, 15 | 3pm3.2i 1339 | . . 3 ⊢ ((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) |
17 | dp2lt.l | . . . 4 ⊢ 𝐵 < 𝐶 | |
18 | 4, 6 | pm3.2i 471 | . . . . 5 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
19 | ltdiv1 12074 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (;10 ∈ ℝ ∧ 0 < ;10)) → (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10))) | |
20 | 3, 11, 18, 19 | mp3an 1461 | . . . 4 ⊢ (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10)) |
21 | 17, 20 | mpbi 229 | . . 3 ⊢ (𝐵 / ;10) < (𝐶 / ;10) |
22 | axltadd 11283 | . . . 4 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < (𝐶 / ;10) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)))) | |
23 | 22 | imp 407 | . . 3 ⊢ ((((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 / ;10) < (𝐶 / ;10)) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10))) |
24 | 16, 21, 23 | mp2an 690 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)) |
25 | df-dp2 32025 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
26 | df-dp2 32025 | . 2 ⊢ _𝐴𝐶 = (𝐴 + (𝐶 / ;10)) | |
27 | 24, 25, 26 | 3brtr4i 5177 | 1 ⊢ _𝐴𝐵 < _𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5147 (class class class)co 7405 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 < clt 11244 / cdiv 11867 ℕ0cn0 12468 ;cdc 12673 ℝ+crp 12970 _cdp2 32024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-dec 12674 df-rp 12971 df-dp2 32025 |
This theorem is referenced by: dplt 32057 hgt750lem2 33652 |
Copyright terms: Public domain | W3C validator |