| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
| dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
| dp2lt.c | ⊢ 𝐶 ∈ ℝ+ |
| dp2lt.l | ⊢ 𝐵 < 𝐶 |
| Ref | Expression |
|---|---|
| dp2lt | ⊢ _𝐴𝐵 < _𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 12898 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
| 2 | dp2lt.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
| 3 | 1, 2 | sselii 3931 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
| 4 | 10re 12607 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 5 | 0re 11114 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 6 | 10pos 12605 | . . . . . 6 ⊢ 0 < ;10 | |
| 7 | 5, 6 | gtneii 11225 | . . . . 5 ⊢ ;10 ≠ 0 |
| 8 | redivcl 11840 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐵 / ;10) ∈ ℝ) | |
| 9 | 3, 4, 7, 8 | mp3an 1463 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
| 10 | dp2lt.c | . . . . . 6 ⊢ 𝐶 ∈ ℝ+ | |
| 11 | 1, 10 | sselii 3931 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 12 | redivcl 11840 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐶 / ;10) ∈ ℝ) | |
| 13 | 11, 4, 7, 12 | mp3an 1463 | . . . 4 ⊢ (𝐶 / ;10) ∈ ℝ |
| 14 | dp2lt.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 15 | 14 | nn0rei 12392 | . . . 4 ⊢ 𝐴 ∈ ℝ |
| 16 | 9, 13, 15 | 3pm3.2i 1340 | . . 3 ⊢ ((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) |
| 17 | dp2lt.l | . . . 4 ⊢ 𝐵 < 𝐶 | |
| 18 | 4, 6 | pm3.2i 470 | . . . . 5 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
| 19 | ltdiv1 11986 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (;10 ∈ ℝ ∧ 0 < ;10)) → (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10))) | |
| 20 | 3, 11, 18, 19 | mp3an 1463 | . . . 4 ⊢ (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10)) |
| 21 | 17, 20 | mpbi 230 | . . 3 ⊢ (𝐵 / ;10) < (𝐶 / ;10) |
| 22 | axltadd 11186 | . . . 4 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < (𝐶 / ;10) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)))) | |
| 23 | 22 | imp 406 | . . 3 ⊢ ((((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 / ;10) < (𝐶 / ;10)) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10))) |
| 24 | 16, 21, 23 | mp2an 692 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)) |
| 25 | df-dp2 32850 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 26 | df-dp2 32850 | . 2 ⊢ _𝐴𝐶 = (𝐴 + (𝐶 / ;10)) | |
| 27 | 24, 25, 26 | 3brtr4i 5121 | 1 ⊢ _𝐴𝐵 < _𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 / cdiv 11774 ℕ0cn0 12381 ;cdc 12588 ℝ+crp 12890 _cdp2 32849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 df-rp 12891 df-dp2 32850 |
| This theorem is referenced by: dplt 32882 hgt750lem2 34663 |
| Copyright terms: Public domain | W3C validator |