| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
| dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
| dp2lt.c | ⊢ 𝐶 ∈ ℝ+ |
| dp2lt.l | ⊢ 𝐵 < 𝐶 |
| Ref | Expression |
|---|---|
| dp2lt | ⊢ _𝐴𝐵 < _𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 12902 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
| 2 | dp2lt.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
| 3 | 1, 2 | sselii 3927 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
| 4 | 10re 12615 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 5 | 0re 11123 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 6 | 10pos 12613 | . . . . . 6 ⊢ 0 < ;10 | |
| 7 | 5, 6 | gtneii 11234 | . . . . 5 ⊢ ;10 ≠ 0 |
| 8 | redivcl 11849 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐵 / ;10) ∈ ℝ) | |
| 9 | 3, 4, 7, 8 | mp3an 1463 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
| 10 | dp2lt.c | . . . . . 6 ⊢ 𝐶 ∈ ℝ+ | |
| 11 | 1, 10 | sselii 3927 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 12 | redivcl 11849 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐶 / ;10) ∈ ℝ) | |
| 13 | 11, 4, 7, 12 | mp3an 1463 | . . . 4 ⊢ (𝐶 / ;10) ∈ ℝ |
| 14 | dp2lt.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 15 | 14 | nn0rei 12401 | . . . 4 ⊢ 𝐴 ∈ ℝ |
| 16 | 9, 13, 15 | 3pm3.2i 1340 | . . 3 ⊢ ((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) |
| 17 | dp2lt.l | . . . 4 ⊢ 𝐵 < 𝐶 | |
| 18 | 4, 6 | pm3.2i 470 | . . . . 5 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
| 19 | ltdiv1 11995 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (;10 ∈ ℝ ∧ 0 < ;10)) → (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10))) | |
| 20 | 3, 11, 18, 19 | mp3an 1463 | . . . 4 ⊢ (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10)) |
| 21 | 17, 20 | mpbi 230 | . . 3 ⊢ (𝐵 / ;10) < (𝐶 / ;10) |
| 22 | axltadd 11195 | . . . 4 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < (𝐶 / ;10) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)))) | |
| 23 | 22 | imp 406 | . . 3 ⊢ ((((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 / ;10) < (𝐶 / ;10)) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10))) |
| 24 | 16, 21, 23 | mp2an 692 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)) |
| 25 | df-dp2 32861 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 26 | df-dp2 32861 | . 2 ⊢ _𝐴𝐶 = (𝐴 + (𝐶 / ;10)) | |
| 27 | 24, 25, 26 | 3brtr4i 5125 | 1 ⊢ _𝐴𝐵 < _𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 + caddc 11018 < clt 11155 / cdiv 11783 ℕ0cn0 12390 ;cdc 12596 ℝ+crp 12894 _cdp2 32860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-dec 12597 df-rp 12895 df-dp2 32861 |
| This theorem is referenced by: dplt 32893 hgt750lem2 34688 |
| Copyright terms: Public domain | W3C validator |