| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dp2lt.a | ⊢ 𝐴 ∈ ℕ0 |
| dp2lt.b | ⊢ 𝐵 ∈ ℝ+ |
| dp2lt.c | ⊢ 𝐶 ∈ ℝ+ |
| dp2lt.l | ⊢ 𝐵 < 𝐶 |
| Ref | Expression |
|---|---|
| dp2lt | ⊢ _𝐴𝐵 < _𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 12959 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
| 2 | dp2lt.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
| 3 | 1, 2 | sselii 3943 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
| 4 | 10re 12668 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 5 | 0re 11176 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 6 | 10pos 12666 | . . . . . 6 ⊢ 0 < ;10 | |
| 7 | 5, 6 | gtneii 11286 | . . . . 5 ⊢ ;10 ≠ 0 |
| 8 | redivcl 11901 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐵 / ;10) ∈ ℝ) | |
| 9 | 3, 4, 7, 8 | mp3an 1463 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
| 10 | dp2lt.c | . . . . . 6 ⊢ 𝐶 ∈ ℝ+ | |
| 11 | 1, 10 | sselii 3943 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 12 | redivcl 11901 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ ;10 ∈ ℝ ∧ ;10 ≠ 0) → (𝐶 / ;10) ∈ ℝ) | |
| 13 | 11, 4, 7, 12 | mp3an 1463 | . . . 4 ⊢ (𝐶 / ;10) ∈ ℝ |
| 14 | dp2lt.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 15 | 14 | nn0rei 12453 | . . . 4 ⊢ 𝐴 ∈ ℝ |
| 16 | 9, 13, 15 | 3pm3.2i 1340 | . . 3 ⊢ ((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) |
| 17 | dp2lt.l | . . . 4 ⊢ 𝐵 < 𝐶 | |
| 18 | 4, 6 | pm3.2i 470 | . . . . 5 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
| 19 | ltdiv1 12047 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (;10 ∈ ℝ ∧ 0 < ;10)) → (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10))) | |
| 20 | 3, 11, 18, 19 | mp3an 1463 | . . . 4 ⊢ (𝐵 < 𝐶 ↔ (𝐵 / ;10) < (𝐶 / ;10)) |
| 21 | 17, 20 | mpbi 230 | . . 3 ⊢ (𝐵 / ;10) < (𝐶 / ;10) |
| 22 | axltadd 11247 | . . . 4 ⊢ (((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / ;10) < (𝐶 / ;10) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)))) | |
| 23 | 22 | imp 406 | . . 3 ⊢ ((((𝐵 / ;10) ∈ ℝ ∧ (𝐶 / ;10) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 / ;10) < (𝐶 / ;10)) → (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10))) |
| 24 | 16, 21, 23 | mp2an 692 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + (𝐶 / ;10)) |
| 25 | df-dp2 32792 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 26 | df-dp2 32792 | . 2 ⊢ _𝐴𝐶 = (𝐴 + (𝐶 / ;10)) | |
| 27 | 24, 25, 26 | 3brtr4i 5137 | 1 ⊢ _𝐴𝐵 < _𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 / cdiv 11835 ℕ0cn0 12442 ;cdc 12649 ℝ+crp 12951 _cdp2 32791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-dec 12650 df-rp 12952 df-dp2 32792 |
| This theorem is referenced by: dplt 32824 hgt750lem2 34643 |
| Copyright terms: Public domain | W3C validator |