Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2lt Structured version   Visualization version   GIF version

Theorem dp2lt 32038
Description: Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dp2lt.a 𝐴 ∈ ℕ0
dp2lt.b 𝐵 ∈ ℝ+
dp2lt.c 𝐶 ∈ ℝ+
dp2lt.l 𝐵 < 𝐶
Assertion
Ref Expression
dp2lt 𝐴𝐵 < 𝐴𝐶

Proof of Theorem dp2lt
StepHypRef Expression
1 rpssre 12977 . . . . . 6 + ⊆ ℝ
2 dp2lt.b . . . . . 6 𝐵 ∈ ℝ+
31, 2sselii 3978 . . . . 5 𝐵 ∈ ℝ
4 10re 12692 . . . . 5 10 ∈ ℝ
5 0re 11212 . . . . . 6 0 ∈ ℝ
6 10pos 12690 . . . . . 6 0 < 10
75, 6gtneii 11322 . . . . 5 10 ≠ 0
8 redivcl 11929 . . . . 5 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ ∧ 10 ≠ 0) → (𝐵 / 10) ∈ ℝ)
93, 4, 7, 8mp3an 1461 . . . 4 (𝐵 / 10) ∈ ℝ
10 dp2lt.c . . . . . 6 𝐶 ∈ ℝ+
111, 10sselii 3978 . . . . 5 𝐶 ∈ ℝ
12 redivcl 11929 . . . . 5 ((𝐶 ∈ ℝ ∧ 10 ∈ ℝ ∧ 10 ≠ 0) → (𝐶 / 10) ∈ ℝ)
1311, 4, 7, 12mp3an 1461 . . . 4 (𝐶 / 10) ∈ ℝ
14 dp2lt.a . . . . 5 𝐴 ∈ ℕ0
1514nn0rei 12479 . . . 4 𝐴 ∈ ℝ
169, 13, 153pm3.2i 1339 . . 3 ((𝐵 / 10) ∈ ℝ ∧ (𝐶 / 10) ∈ ℝ ∧ 𝐴 ∈ ℝ)
17 dp2lt.l . . . 4 𝐵 < 𝐶
184, 6pm3.2i 471 . . . . 5 (10 ∈ ℝ ∧ 0 < 10)
19 ltdiv1 12074 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (10 ∈ ℝ ∧ 0 < 10)) → (𝐵 < 𝐶 ↔ (𝐵 / 10) < (𝐶 / 10)))
203, 11, 18, 19mp3an 1461 . . . 4 (𝐵 < 𝐶 ↔ (𝐵 / 10) < (𝐶 / 10))
2117, 20mpbi 229 . . 3 (𝐵 / 10) < (𝐶 / 10)
22 axltadd 11283 . . . 4 (((𝐵 / 10) ∈ ℝ ∧ (𝐶 / 10) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / 10) < (𝐶 / 10) → (𝐴 + (𝐵 / 10)) < (𝐴 + (𝐶 / 10))))
2322imp 407 . . 3 ((((𝐵 / 10) ∈ ℝ ∧ (𝐶 / 10) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 / 10) < (𝐶 / 10)) → (𝐴 + (𝐵 / 10)) < (𝐴 + (𝐶 / 10)))
2416, 21, 23mp2an 690 . 2 (𝐴 + (𝐵 / 10)) < (𝐴 + (𝐶 / 10))
25 df-dp2 32025 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
26 df-dp2 32025 . 2 𝐴𝐶 = (𝐴 + (𝐶 / 10))
2724, 25, 263brtr4i 5177 1 𝐴𝐵 < 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087  wcel 2106  wne 2940   class class class wbr 5147  (class class class)co 7405  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244   / cdiv 11867  0cn0 12468  cdc 12673  +crp 12970  cdp2 32024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-dec 12674  df-rp 12971  df-dp2 32025
This theorem is referenced by:  dplt  32057  hgt750lem2  33652
  Copyright terms: Public domain W3C validator