Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2lt Structured version   Visualization version   GIF version

Theorem dp2lt 31204
Description: Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dp2lt.a 𝐴 ∈ ℕ0
dp2lt.b 𝐵 ∈ ℝ+
dp2lt.c 𝐶 ∈ ℝ+
dp2lt.l 𝐵 < 𝐶
Assertion
Ref Expression
dp2lt 𝐴𝐵 < 𝐴𝐶

Proof of Theorem dp2lt
StepHypRef Expression
1 rpssre 12783 . . . . . 6 + ⊆ ℝ
2 dp2lt.b . . . . . 6 𝐵 ∈ ℝ+
31, 2sselii 3923 . . . . 5 𝐵 ∈ ℝ
4 10re 12502 . . . . 5 10 ∈ ℝ
5 0re 11023 . . . . . 6 0 ∈ ℝ
6 10pos 12500 . . . . . 6 0 < 10
75, 6gtneii 11133 . . . . 5 10 ≠ 0
8 redivcl 11740 . . . . 5 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ ∧ 10 ≠ 0) → (𝐵 / 10) ∈ ℝ)
93, 4, 7, 8mp3an 1461 . . . 4 (𝐵 / 10) ∈ ℝ
10 dp2lt.c . . . . . 6 𝐶 ∈ ℝ+
111, 10sselii 3923 . . . . 5 𝐶 ∈ ℝ
12 redivcl 11740 . . . . 5 ((𝐶 ∈ ℝ ∧ 10 ∈ ℝ ∧ 10 ≠ 0) → (𝐶 / 10) ∈ ℝ)
1311, 4, 7, 12mp3an 1461 . . . 4 (𝐶 / 10) ∈ ℝ
14 dp2lt.a . . . . 5 𝐴 ∈ ℕ0
1514nn0rei 12290 . . . 4 𝐴 ∈ ℝ
169, 13, 153pm3.2i 1339 . . 3 ((𝐵 / 10) ∈ ℝ ∧ (𝐶 / 10) ∈ ℝ ∧ 𝐴 ∈ ℝ)
17 dp2lt.l . . . 4 𝐵 < 𝐶
184, 6pm3.2i 472 . . . . 5 (10 ∈ ℝ ∧ 0 < 10)
19 ltdiv1 11885 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (10 ∈ ℝ ∧ 0 < 10)) → (𝐵 < 𝐶 ↔ (𝐵 / 10) < (𝐶 / 10)))
203, 11, 18, 19mp3an 1461 . . . 4 (𝐵 < 𝐶 ↔ (𝐵 / 10) < (𝐶 / 10))
2117, 20mpbi 229 . . 3 (𝐵 / 10) < (𝐶 / 10)
22 axltadd 11094 . . . 4 (((𝐵 / 10) ∈ ℝ ∧ (𝐶 / 10) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / 10) < (𝐶 / 10) → (𝐴 + (𝐵 / 10)) < (𝐴 + (𝐶 / 10))))
2322imp 408 . . 3 ((((𝐵 / 10) ∈ ℝ ∧ (𝐶 / 10) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 / 10) < (𝐶 / 10)) → (𝐴 + (𝐵 / 10)) < (𝐴 + (𝐶 / 10)))
2416, 21, 23mp2an 690 . 2 (𝐴 + (𝐵 / 10)) < (𝐴 + (𝐶 / 10))
25 df-dp2 31191 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
26 df-dp2 31191 . 2 𝐴𝐶 = (𝐴 + (𝐶 / 10))
2724, 25, 263brtr4i 5111 1 𝐴𝐵 < 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1087  wcel 2104  wne 2941   class class class wbr 5081  (class class class)co 7307  cr 10916  0cc0 10917  1c1 10918   + caddc 10920   < clt 11055   / cdiv 11678  0cn0 12279  cdc 12483  +crp 12776  cdp2 31190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-dec 12484  df-rp 12777  df-dp2 31191
This theorem is referenced by:  dplt  31223  hgt750lem2  32677
  Copyright terms: Public domain W3C validator