![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lt1sr | Structured version Visualization version GIF version |
Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0lt1sr | ⊢ 0R <R 1R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 10227 | . . . . . 6 ⊢ 1P ∈ P | |
2 | addclpr 10230 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
3 | 1, 1, 2 | mp2an 679 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
4 | ltaddpr 10246 | . . . . 5 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → (1P +P 1P)<P ((1P +P 1P) +P 1P)) | |
5 | 3, 1, 4 | mp2an 679 | . . . 4 ⊢ (1P +P 1P)<P ((1P +P 1P) +P 1P) |
6 | addcompr 10233 | . . . 4 ⊢ (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P) | |
7 | 5, 6 | breqtrri 4950 | . . 3 ⊢ (1P +P 1P)<P (1P +P (1P +P 1P)) |
8 | ltsrpr 10289 | . . 3 ⊢ ([〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P))) | |
9 | 7, 8 | mpbir 223 | . 2 ⊢ [〈1P, 1P〉] ~R <R [〈(1P +P 1P), 1P〉] ~R |
10 | df-0r 10272 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
11 | df-1r 10273 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
12 | 9, 10, 11 | 3brtr4i 4953 | 1 ⊢ 0R <R 1R |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2048 〈cop 4441 class class class wbr 4923 (class class class)co 6970 [cec 8079 Pcnp 10071 1Pc1p 10072 +P cpp 10073 <P cltp 10075 ~R cer 10076 0Rc0r 10078 1Rc1r 10079 <R cltr 10083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-omul 7902 df-er 8081 df-ec 8083 df-qs 8087 df-ni 10084 df-pli 10085 df-mi 10086 df-lti 10087 df-plpq 10120 df-mpq 10121 df-ltpq 10122 df-enq 10123 df-nq 10124 df-erq 10125 df-plq 10126 df-mq 10127 df-1nq 10128 df-rq 10129 df-ltnq 10130 df-np 10193 df-1p 10194 df-plp 10195 df-ltp 10197 df-enr 10267 df-nr 10268 df-ltr 10271 df-0r 10272 df-1r 10273 |
This theorem is referenced by: 1ne0sr 10308 supsrlem 10323 |
Copyright terms: Public domain | W3C validator |