![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lt1sr | Structured version Visualization version GIF version |
Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0lt1sr | ⊢ 0R <R 1R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 11013 | . . . . . 6 ⊢ 1P ∈ P | |
2 | addclpr 11016 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
3 | 1, 1, 2 | mp2an 689 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
4 | ltaddpr 11032 | . . . . 5 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → (1P +P 1P)<P ((1P +P 1P) +P 1P)) | |
5 | 3, 1, 4 | mp2an 689 | . . . 4 ⊢ (1P +P 1P)<P ((1P +P 1P) +P 1P) |
6 | addcompr 11019 | . . . 4 ⊢ (1P +P (1P +P 1P)) = ((1P +P 1P) +P 1P) | |
7 | 5, 6 | breqtrri 5175 | . . 3 ⊢ (1P +P 1P)<P (1P +P (1P +P 1P)) |
8 | ltsrpr 11075 | . . 3 ⊢ ([⟨1P, 1P⟩] ~R <R [⟨(1P +P 1P), 1P⟩] ~R ↔ (1P +P 1P)<P (1P +P (1P +P 1P))) | |
9 | 7, 8 | mpbir 230 | . 2 ⊢ [⟨1P, 1P⟩] ~R <R [⟨(1P +P 1P), 1P⟩] ~R |
10 | df-0r 11058 | . 2 ⊢ 0R = [⟨1P, 1P⟩] ~R | |
11 | df-1r 11059 | . 2 ⊢ 1R = [⟨(1P +P 1P), 1P⟩] ~R | |
12 | 9, 10, 11 | 3brtr4i 5178 | 1 ⊢ 0R <R 1R |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ⟨cop 4634 class class class wbr 5148 (class class class)co 7412 [cec 8704 Pcnp 10857 1Pc1p 10858 +P cpp 10859 <P cltp 10861 ~R cer 10862 0Rc0r 10864 1Rc1r 10865 <R cltr 10869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-inf2 9639 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-omul 8474 df-er 8706 df-ec 8708 df-qs 8712 df-ni 10870 df-pli 10871 df-mi 10872 df-lti 10873 df-plpq 10906 df-mpq 10907 df-ltpq 10908 df-enq 10909 df-nq 10910 df-erq 10911 df-plq 10912 df-mq 10913 df-1nq 10914 df-rq 10915 df-ltnq 10916 df-np 10979 df-1p 10980 df-plp 10981 df-ltp 10983 df-enr 11053 df-nr 11054 df-ltr 11057 df-0r 11058 df-1r 11059 |
This theorem is referenced by: 1ne0sr 11094 supsrlem 11109 |
Copyright terms: Public domain | W3C validator |