Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3brtr3d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
3brtr3d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3brtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3brtr3d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 3brtr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | breq12d 5083 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷)) |
5 | 1, 4 | mpbid 231 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Copyright terms: Public domain | W3C validator |