MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumabs Structured version   Visualization version   GIF version

Theorem fsumabs 15743
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumabs.1 (𝜑𝐴 ∈ Fin)
fsumabs.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumabs (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumabs
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 4003 . 2 𝐴𝐴
2 fsumabs.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 4006 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 15631 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
54fveq2d 6892 . . . . . . 7 (𝑤 = ∅ → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ ∅ 𝐵))
6 sumeq1 15631 . . . . . . 7 (𝑤 = ∅ → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ ∅ (abs‘𝐵))
75, 6breq12d 5160 . . . . . 6 (𝑤 = ∅ → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
83, 7imbi12d 344 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))))
98imbi2d 340 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))))
10 sseq1 4006 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 15631 . . . . . . . 8 (𝑤 = 𝑥 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑥 𝐵)
1211fveq2d 6892 . . . . . . 7 (𝑤 = 𝑥 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝑥 𝐵))
13 sumeq1 15631 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝑥 (abs‘𝐵))
1412, 13breq12d 5160 . . . . . 6 (𝑤 = 𝑥 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
1510, 14imbi12d 344 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))))
1615imbi2d 340 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))))
17 sseq1 4006 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 15631 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵)
1918fveq2d 6892 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵))
20 sumeq1 15631 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))
2119, 20breq12d 5160 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
2217, 21imbi12d 344 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
2322imbi2d 340 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
24 sseq1 4006 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 15631 . . . . . . . 8 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
2625fveq2d 6892 . . . . . . 7 (𝑤 = 𝐴 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝐴 𝐵))
27 sumeq1 15631 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝐴 (abs‘𝐵))
2826, 27breq12d 5160 . . . . . 6 (𝑤 = 𝐴 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
2924, 28imbi12d 344 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
3029imbi2d 340 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))))
31 0le0 12309 . . . . . 6 0 ≤ 0
32 sum0 15663 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐵 = 0
3332fveq2i 6891 . . . . . . 7 (abs‘Σ𝑘 ∈ ∅ 𝐵) = (abs‘0)
34 abs0 15228 . . . . . . 7 (abs‘0) = 0
3533, 34eqtri 2760 . . . . . 6 (abs‘Σ𝑘 ∈ ∅ 𝐵) = 0
36 sum0 15663 . . . . . 6 Σ𝑘 ∈ ∅ (abs‘𝐵) = 0
3731, 35, 363brtr4i 5177 . . . . 5 (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)
38372a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
39 ssun1 4171 . . . . . . . . . 10 𝑥 ⊆ (𝑥 ∪ {𝑦})
40 sstr 3989 . . . . . . . . . 10 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4139, 40mpan 688 . . . . . . . . 9 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4241imim1i 63 . . . . . . . 8 ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
43 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
4443, 2syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
45 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
4645unssad 4186 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4744, 46ssfid 9263 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin)
4846sselda 3981 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝑘𝐴)
49 fsumabs.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5043, 48, 49syl2an2r 683 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝐵 ∈ ℂ)
5147, 50fsumcl 15675 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 𝐵 ∈ ℂ)
5251abscld 15379 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘𝑥 𝐵) ∈ ℝ)
5350abscld 15379 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → (abs‘𝐵) ∈ ℝ)
5447, 53fsumrecl 15676 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 (abs‘𝐵) ∈ ℝ)
5545unssbd 4187 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴)
56 vex 3478 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
5756snss 4788 . . . . . . . . . . . . . . . 16 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
5855, 57sylibr 233 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦𝐴)
5949ralrimiva 3146 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
6043, 59syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
61 nfcsb1v 3917 . . . . . . . . . . . . . . . . 17 𝑘𝑦 / 𝑘𝐵
6261nfel1 2919 . . . . . . . . . . . . . . . 16 𝑘𝑦 / 𝑘𝐵 ∈ ℂ
63 csbeq1a 3906 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦𝐵 = 𝑦 / 𝑘𝐵)
6463eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑘𝐵 ∈ ℂ))
6562, 64rspc 3600 . . . . . . . . . . . . . . 15 (𝑦𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑘𝐵 ∈ ℂ))
6658, 60, 65sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘𝐵 ∈ ℂ)
6766abscld 15379 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℝ)
6852, 54, 67leadd1d 11804 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
69 simplr 767 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
70 disjsn 4714 . . . . . . . . . . . . . . . 16 ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑥)
7169, 70sylibr 233 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅)
72 eqidd 2733 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦}))
7344, 45ssfid 9263 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ∈ Fin)
7445sselda 3981 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝑘𝐴)
7543, 74, 49syl2an2r 683 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ ℂ)
7675abscld 15379 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℝ)
7776recnd 11238 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℂ)
7871, 72, 73, 77fsumsplit 15683 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)))
79 csbfv2g 6937 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
8079elv 3480 . . . . . . . . . . . . . . . . . 18 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵)
8167recnd 11238 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℂ)
8280, 81eqeltrid 2837 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ)
83 sumsns 15692 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
8456, 82, 83sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
8584, 80eqtrdi 2788 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
8685oveq2d 7421 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
8778, 86eqtrd 2772 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
8887breq2d 5159 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
8968, 88bitr4d 281 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
9071, 72, 73, 75fsumsplit 15683 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵))
91 sumsns 15692 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴𝑦 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
9258, 66, 91syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
9392oveq2d 7421 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
9490, 93eqtrd 2772 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
9594fveq2d 6892 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) = (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)))
9651, 66abstrid 15399 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9795, 96eqbrtrd 5169 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9873, 75fsumcl 15675 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 ∈ ℂ)
9998abscld 15379 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ)
10052, 67readdcld 11239 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ)
10173, 76fsumrecl 15676 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ)
102 letr 11304 . . . . . . . . . . . . 13 (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ ∧ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
10399, 100, 101, 102syl3anc 1371 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
10497, 103mpand 693 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
10589, 104sylbid 239 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
106105ex 413 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
107106a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑦𝑥) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
10842, 107syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
109108expcom 414 . . . . . 6 𝑦𝑥 → (𝜑 → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
110109a2d 29 . . . . 5 𝑦𝑥 → ((𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
111110adantl 482 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
1129, 16, 23, 30, 38, 111findcard2s 9161 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
1132, 112mpcom 38 . 2 (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
1141, 113mpi 20 1 (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  csb 3892  cun 3945  cin 3946  wss 3947  c0 4321  {csn 4627   class class class wbr 5147  cfv 6540  (class class class)co 7405  Fincfn 8935  cc 11104  cr 11105  0cc0 11106   + caddc 11109  cle 11245  abscabs 15177  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  o1fsum  15755  seqabs  15756  cvgcmpce  15760  mertenslem1  15826  dvfsumabs  25531  mtest  25907  mtestbdd  25908  abelthlem7  25941  fsumharmonic  26505  ftalem1  26566  ftalem5  26570  dchrisumlem2  26982  dchrmusum2  26986  dchrvmasumlem3  26991  dchrvmasumiflem1  26993  dchrisum0lem1  27008  dchrisum0lem2a  27009  mudivsum  27022  mulogsumlem  27023  2vmadivsumlem  27032  selberglem2  27038  selberg3lem1  27049  selberg4lem1  27052  pntrsumbnd  27058  pntrlog2bndlem1  27069  pntrlog2bndlem3  27071  knoppndvlem11  35386  fourierdlem73  44881  etransclem23  44959
  Copyright terms: Public domain W3C validator