MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumabs Structured version   Visualization version   GIF version

Theorem fsumabs 15849
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumabs.1 (𝜑𝐴 ∈ Fin)
fsumabs.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumabs (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumabs
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 4031 . 2 𝐴𝐴
2 fsumabs.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 4034 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 15737 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
54fveq2d 6924 . . . . . . 7 (𝑤 = ∅ → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ ∅ 𝐵))
6 sumeq1 15737 . . . . . . 7 (𝑤 = ∅ → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ ∅ (abs‘𝐵))
75, 6breq12d 5179 . . . . . 6 (𝑤 = ∅ → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
83, 7imbi12d 344 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))))
98imbi2d 340 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))))
10 sseq1 4034 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 15737 . . . . . . . 8 (𝑤 = 𝑥 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑥 𝐵)
1211fveq2d 6924 . . . . . . 7 (𝑤 = 𝑥 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝑥 𝐵))
13 sumeq1 15737 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝑥 (abs‘𝐵))
1412, 13breq12d 5179 . . . . . 6 (𝑤 = 𝑥 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
1510, 14imbi12d 344 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))))
1615imbi2d 340 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))))
17 sseq1 4034 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 15737 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵)
1918fveq2d 6924 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵))
20 sumeq1 15737 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))
2119, 20breq12d 5179 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
2217, 21imbi12d 344 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
2322imbi2d 340 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
24 sseq1 4034 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 15737 . . . . . . . 8 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
2625fveq2d 6924 . . . . . . 7 (𝑤 = 𝐴 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝐴 𝐵))
27 sumeq1 15737 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝐴 (abs‘𝐵))
2826, 27breq12d 5179 . . . . . 6 (𝑤 = 𝐴 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
2924, 28imbi12d 344 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
3029imbi2d 340 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))))
31 0le0 12394 . . . . . 6 0 ≤ 0
32 sum0 15769 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐵 = 0
3332fveq2i 6923 . . . . . . 7 (abs‘Σ𝑘 ∈ ∅ 𝐵) = (abs‘0)
34 abs0 15334 . . . . . . 7 (abs‘0) = 0
3533, 34eqtri 2768 . . . . . 6 (abs‘Σ𝑘 ∈ ∅ 𝐵) = 0
36 sum0 15769 . . . . . 6 Σ𝑘 ∈ ∅ (abs‘𝐵) = 0
3731, 35, 363brtr4i 5196 . . . . 5 (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)
38372a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
39 ssun1 4201 . . . . . . . . . 10 𝑥 ⊆ (𝑥 ∪ {𝑦})
40 sstr 4017 . . . . . . . . . 10 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4139, 40mpan 689 . . . . . . . . 9 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4241imim1i 63 . . . . . . . 8 ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
43 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
4443, 2syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
45 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
4645unssad 4216 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4744, 46ssfid 9329 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin)
4846sselda 4008 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝑘𝐴)
49 fsumabs.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5043, 48, 49syl2an2r 684 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝐵 ∈ ℂ)
5147, 50fsumcl 15781 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 𝐵 ∈ ℂ)
5251abscld 15485 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘𝑥 𝐵) ∈ ℝ)
5350abscld 15485 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → (abs‘𝐵) ∈ ℝ)
5447, 53fsumrecl 15782 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 (abs‘𝐵) ∈ ℝ)
5545unssbd 4217 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴)
56 vex 3492 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
5756snss 4810 . . . . . . . . . . . . . . . 16 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
5855, 57sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦𝐴)
5949ralrimiva 3152 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
6043, 59syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
61 nfcsb1v 3946 . . . . . . . . . . . . . . . . 17 𝑘𝑦 / 𝑘𝐵
6261nfel1 2925 . . . . . . . . . . . . . . . 16 𝑘𝑦 / 𝑘𝐵 ∈ ℂ
63 csbeq1a 3935 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦𝐵 = 𝑦 / 𝑘𝐵)
6463eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑘𝐵 ∈ ℂ))
6562, 64rspc 3623 . . . . . . . . . . . . . . 15 (𝑦𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑘𝐵 ∈ ℂ))
6658, 60, 65sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘𝐵 ∈ ℂ)
6766abscld 15485 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℝ)
6852, 54, 67leadd1d 11884 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
69 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
70 disjsn 4736 . . . . . . . . . . . . . . . 16 ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑥)
7169, 70sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅)
72 eqidd 2741 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦}))
7344, 45ssfid 9329 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ∈ Fin)
7445sselda 4008 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝑘𝐴)
7543, 74, 49syl2an2r 684 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ ℂ)
7675abscld 15485 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℝ)
7776recnd 11318 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℂ)
7871, 72, 73, 77fsumsplit 15789 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)))
79 csbfv2g 6969 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
8079elv 3493 . . . . . . . . . . . . . . . . . 18 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵)
8167recnd 11318 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℂ)
8280, 81eqeltrid 2848 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ)
83 sumsns 15798 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
8456, 82, 83sylancr 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
8584, 80eqtrdi 2796 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
8685oveq2d 7464 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
8778, 86eqtrd 2780 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
8887breq2d 5178 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
8968, 88bitr4d 282 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
9071, 72, 73, 75fsumsplit 15789 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵))
91 sumsns 15798 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴𝑦 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
9258, 66, 91syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
9392oveq2d 7464 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
9490, 93eqtrd 2780 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
9594fveq2d 6924 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) = (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)))
9651, 66abstrid 15505 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9795, 96eqbrtrd 5188 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9873, 75fsumcl 15781 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 ∈ ℂ)
9998abscld 15485 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ)
10052, 67readdcld 11319 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ)
10173, 76fsumrecl 15782 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ)
102 letr 11384 . . . . . . . . . . . . 13 (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ ∧ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
10399, 100, 101, 102syl3anc 1371 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
10497, 103mpand 694 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
10589, 104sylbid 240 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
106105ex 412 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
107106a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑦𝑥) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
10842, 107syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
109108expcom 413 . . . . . 6 𝑦𝑥 → (𝜑 → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
110109a2d 29 . . . . 5 𝑦𝑥 → ((𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
111110adantl 481 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
1129, 16, 23, 30, 38, 111findcard2s 9231 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
1132, 112mpcom 38 . 2 (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
1141, 113mpi 20 1 (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  csb 3921  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184   + caddc 11187  cle 11325  abscabs 15283  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  o1fsum  15861  seqabs  15862  cvgcmpce  15866  mertenslem1  15932  dvfsumabs  26083  mtest  26465  mtestbdd  26466  abelthlem7  26500  fsumharmonic  27073  ftalem1  27134  ftalem5  27138  dchrisumlem2  27552  dchrmusum2  27556  dchrvmasumlem3  27561  dchrvmasumiflem1  27563  dchrisum0lem1  27578  dchrisum0lem2a  27579  mudivsum  27592  mulogsumlem  27593  2vmadivsumlem  27602  selberglem2  27608  selberg3lem1  27619  selberg4lem1  27622  pntrsumbnd  27628  pntrlog2bndlem1  27639  pntrlog2bndlem3  27641  knoppndvlem11  36488  fourierdlem73  46100  etransclem23  46178
  Copyright terms: Public domain W3C validator