| Step | Hyp | Ref
| Expression |
| 1 | | ssid 4006 |
. 2
⊢ 𝐴 ⊆ 𝐴 |
| 2 | | fsumabs.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 3 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 4 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
| 5 | 4 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑤 = ∅ →
(abs‘Σ𝑘 ∈
𝑤 𝐵) = (abs‘Σ𝑘 ∈ ∅ 𝐵)) |
| 6 | | sumeq1 15725 |
. . . . . . 7
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ ∅ (abs‘𝐵)) |
| 7 | 5, 6 | breq12d 5156 |
. . . . . 6
⊢ (𝑤 = ∅ →
((abs‘Σ𝑘 ∈
𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))) |
| 8 | 3, 7 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))) |
| 9 | 8 | imbi2d 340 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))))) |
| 10 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) |
| 11 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝑥 𝐵) |
| 12 | 11 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) = (abs‘Σ𝑘 ∈ 𝑥 𝐵)) |
| 13 | | sumeq1 15725 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ 𝑥 (abs‘𝐵)) |
| 14 | 12, 13 | breq12d 5156 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) |
| 15 | 10, 14 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)))) |
| 16 | 15 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝑥 → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))))) |
| 17 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤 ⊆ 𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴)) |
| 18 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) |
| 19 | 18 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → (abs‘Σ𝑘 ∈ 𝑤 𝐵) = (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵)) |
| 20 | | sumeq1 15725 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) |
| 21 | 19, 20 | breq12d 5156 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 22 | 17, 21 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
| 23 | 22 | imbi2d 340 |
. . . 4
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
| 24 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 25 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
| 26 | 25 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) = (abs‘Σ𝑘 ∈ 𝐴 𝐵)) |
| 27 | | sumeq1 15725 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 (abs‘𝐵) = Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |
| 28 | 26, 27 | breq12d 5156 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵))) |
| 29 | 24, 28 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵)) ↔ (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)))) |
| 30 | 29 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝐴 → ((𝜑 → (𝑤 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑤 𝐵) ≤ Σ𝑘 ∈ 𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵))))) |
| 31 | | 0le0 12367 |
. . . . . 6
⊢ 0 ≤
0 |
| 32 | | sum0 15757 |
. . . . . . . 8
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
| 33 | 32 | fveq2i 6909 |
. . . . . . 7
⊢
(abs‘Σ𝑘
∈ ∅ 𝐵) =
(abs‘0) |
| 34 | | abs0 15324 |
. . . . . . 7
⊢
(abs‘0) = 0 |
| 35 | 33, 34 | eqtri 2765 |
. . . . . 6
⊢
(abs‘Σ𝑘
∈ ∅ 𝐵) =
0 |
| 36 | | sum0 15757 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ (abs‘𝐵) =
0 |
| 37 | 31, 35, 36 | 3brtr4i 5173 |
. . . . 5
⊢
(abs‘Σ𝑘
∈ ∅ 𝐵) ≤
Σ𝑘 ∈ ∅
(abs‘𝐵) |
| 38 | 37 | 2a1i 12 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))) |
| 39 | | ssun1 4178 |
. . . . . . . . . 10
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑦}) |
| 40 | | sstr 3992 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ⊆ 𝐴) |
| 41 | 39, 40 | mpan 690 |
. . . . . . . . 9
⊢ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → 𝑥 ⊆ 𝐴) |
| 42 | 41 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) |
| 43 | | simpll 767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑) |
| 44 | 43, 2 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin) |
| 45 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴) |
| 46 | 45 | unssad 4193 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ⊆ 𝐴) |
| 47 | 44, 46 | ssfid 9301 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin) |
| 48 | 46 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐴) |
| 49 | | fsumabs.2 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 50 | 43, 48, 49 | syl2an2r 685 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ 𝑥) → 𝐵 ∈ ℂ) |
| 51 | 47, 50 | fsumcl 15769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ 𝑥 𝐵 ∈ ℂ) |
| 52 | 51 | abscld 15475 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ∈ ℝ) |
| 53 | 50 | abscld 15475 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ 𝑥) → (abs‘𝐵) ∈ ℝ) |
| 54 | 47, 53 | fsumrecl 15770 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ 𝑥 (abs‘𝐵) ∈ ℝ) |
| 55 | 45 | unssbd 4194 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴) |
| 56 | | vex 3484 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
| 57 | 56 | snss 4785 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
| 58 | 55, 57 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ 𝐴) |
| 59 | 49 | ralrimiva 3146 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 60 | 43, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 61 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐵 |
| 62 | 61 | nfel1 2922 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ |
| 63 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑘⦌𝐵) |
| 64 | 63 | eleq1d 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑦 → (𝐵 ∈ ℂ ↔ ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ)) |
| 65 | 62, 64 | rspc 3610 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ)) |
| 66 | 58, 60, 65 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) |
| 67 | 66 | abscld 15475 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘⦋𝑦 / 𝑘⦌𝐵) ∈ ℝ) |
| 68 | 52, 54, 67 | leadd1d 11857 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)))) |
| 69 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦 ∈ 𝑥) |
| 70 | | disjsn 4711 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝑥) |
| 71 | 69, 70 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅) |
| 72 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦})) |
| 73 | 44, 45 | ssfid 9301 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ∈ Fin) |
| 74 | 45 | sselda 3983 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝑘 ∈ 𝐴) |
| 75 | 43, 74, 49 | syl2an2r 685 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ ℂ) |
| 76 | 75 | abscld 15475 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℝ) |
| 77 | 76 | recnd 11289 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℂ) |
| 78 | 71, 72, 73, 77 | fsumsplit 15777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵))) |
| 79 | | csbfv2g 6955 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑘⦌(abs‘𝐵) =
(abs‘⦋𝑦
/ 𝑘⦌𝐵)) |
| 80 | 79 | elv 3485 |
. . . . . . . . . . . . . . . . . 18
⊢
⦋𝑦 /
𝑘⦌(abs‘𝐵) = (abs‘⦋𝑦 / 𝑘⦌𝐵) |
| 81 | 67 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘⦋𝑦 / 𝑘⦌𝐵) ∈ ℂ) |
| 82 | 80, 81 | eqeltrid 2845 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ⦋𝑦 / 𝑘⦌(abs‘𝐵) ∈ ℂ) |
| 83 | | sumsns 15786 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ V ∧
⦋𝑦 / 𝑘⦌(abs‘𝐵) ∈ ℂ) →
Σ𝑘 ∈ {𝑦} (abs‘𝐵) = ⦋𝑦 / 𝑘⦌(abs‘𝐵)) |
| 84 | 56, 82, 83 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = ⦋𝑦 / 𝑘⦌(abs‘𝐵)) |
| 85 | 84, 80 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = (abs‘⦋𝑦 / 𝑘⦌𝐵)) |
| 86 | 85 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
| 87 | 78, 86 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
| 88 | 87 | breq2d 5155 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ↔ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ (Σ𝑘 ∈ 𝑥 (abs‘𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)))) |
| 89 | 68, 88 | bitr4d 282 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 90 | 71, 72, 73, 75 | fsumsplit 15777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘 ∈ 𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵)) |
| 91 | | sumsns 15786 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑦}𝐵 = ⦋𝑦 / 𝑘⦌𝐵) |
| 92 | 58, 66, 91 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦}𝐵 = ⦋𝑦 / 𝑘⦌𝐵) |
| 93 | 92 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘 ∈ 𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) |
| 94 | 90, 93 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) |
| 95 | 94 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) = (abs‘(Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵))) |
| 96 | 51, 66 | abstrid 15495 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘(Σ𝑘 ∈ 𝑥 𝐵 + ⦋𝑦 / 𝑘⦌𝐵)) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
| 97 | 95, 96 | eqbrtrd 5165 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵))) |
| 98 | 73, 75 | fsumcl 15769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 ∈ ℂ) |
| 99 | 98 | abscld 15475 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ) |
| 100 | 52, 67 | readdcld 11290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∈ ℝ) |
| 101 | 73, 76 | fsumrecl 15770 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) |
| 102 | | letr 11355 |
. . . . . . . . . . . . 13
⊢
(((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ ∧
((abs‘Σ𝑘 ∈
𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∈ ℝ ∧ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) →
(((abs‘Σ𝑘
∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∧ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 103 | 99, 100, 101, 102 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ∧ ((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 104 | 97, 103 | mpand 695 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ 𝑥 𝐵) + (abs‘⦋𝑦 / 𝑘⦌𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 105 | 89, 104 | sylbid 240 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))) |
| 106 | 105 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ((abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
| 107 | 106 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
| 108 | 42, 107 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑦 ∈ 𝑥) → ((𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))) |
| 109 | 108 | expcom 413 |
. . . . . 6
⊢ (¬
𝑦 ∈ 𝑥 → (𝜑 → ((𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
| 110 | 109 | a2d 29 |
. . . . 5
⊢ (¬
𝑦 ∈ 𝑥 → ((𝜑 → (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
| 111 | 110 | adantl 481 |
. . . 4
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥) → ((𝜑 → (𝑥 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))) |
| 112 | 9, 16, 23, 30, 38, 111 | findcard2s 9205 |
. . 3
⊢ (𝐴 ∈ Fin → (𝜑 → (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)))) |
| 113 | 2, 112 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵))) |
| 114 | 1, 113 | mpi 20 |
1
⊢ (𝜑 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |