MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumabs Structured version   Visualization version   GIF version

Theorem fsumabs 15817
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumabs.1 (𝜑𝐴 ∈ Fin)
fsumabs.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumabs (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumabs
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3981 . 2 𝐴𝐴
2 fsumabs.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3984 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 15705 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
54fveq2d 6880 . . . . . . 7 (𝑤 = ∅ → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ ∅ 𝐵))
6 sumeq1 15705 . . . . . . 7 (𝑤 = ∅ → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ ∅ (abs‘𝐵))
75, 6breq12d 5132 . . . . . 6 (𝑤 = ∅ → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
83, 7imbi12d 344 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵))))
98imbi2d 340 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))))
10 sseq1 3984 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 15705 . . . . . . . 8 (𝑤 = 𝑥 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑥 𝐵)
1211fveq2d 6880 . . . . . . 7 (𝑤 = 𝑥 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝑥 𝐵))
13 sumeq1 15705 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝑥 (abs‘𝐵))
1412, 13breq12d 5132 . . . . . 6 (𝑤 = 𝑥 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
1510, 14imbi12d 344 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))))
1615imbi2d 340 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))))
17 sseq1 3984 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 15705 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵)
1918fveq2d 6880 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵))
20 sumeq1 15705 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))
2119, 20breq12d 5132 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
2217, 21imbi12d 344 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
2322imbi2d 340 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
24 sseq1 3984 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 15705 . . . . . . . 8 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
2625fveq2d 6880 . . . . . . 7 (𝑤 = 𝐴 → (abs‘Σ𝑘𝑤 𝐵) = (abs‘Σ𝑘𝐴 𝐵))
27 sumeq1 15705 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑘𝑤 (abs‘𝐵) = Σ𝑘𝐴 (abs‘𝐵))
2826, 27breq12d 5132 . . . . . 6 (𝑤 = 𝐴 → ((abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵) ↔ (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
2924, 28imbi12d 344 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵)) ↔ (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
3029imbi2d 340 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → (abs‘Σ𝑘𝑤 𝐵) ≤ Σ𝑘𝑤 (abs‘𝐵))) ↔ (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))))
31 0le0 12341 . . . . . 6 0 ≤ 0
32 sum0 15737 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐵 = 0
3332fveq2i 6879 . . . . . . 7 (abs‘Σ𝑘 ∈ ∅ 𝐵) = (abs‘0)
34 abs0 15304 . . . . . . 7 (abs‘0) = 0
3533, 34eqtri 2758 . . . . . 6 (abs‘Σ𝑘 ∈ ∅ 𝐵) = 0
36 sum0 15737 . . . . . 6 Σ𝑘 ∈ ∅ (abs‘𝐵) = 0
3731, 35, 363brtr4i 5149 . . . . 5 (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)
38372a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → (abs‘Σ𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (abs‘𝐵)))
39 ssun1 4153 . . . . . . . . . 10 𝑥 ⊆ (𝑥 ∪ {𝑦})
40 sstr 3967 . . . . . . . . . 10 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4139, 40mpan 690 . . . . . . . . 9 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4241imim1i 63 . . . . . . . 8 ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)))
43 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
4443, 2syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
45 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
4645unssad 4168 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
4744, 46ssfid 9273 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin)
4846sselda 3958 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝑘𝐴)
49 fsumabs.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5043, 48, 49syl2an2r 685 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → 𝐵 ∈ ℂ)
5147, 50fsumcl 15749 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 𝐵 ∈ ℂ)
5251abscld 15455 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘𝑥 𝐵) ∈ ℝ)
5350abscld 15455 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘𝑥) → (abs‘𝐵) ∈ ℝ)
5447, 53fsumrecl 15750 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘𝑥 (abs‘𝐵) ∈ ℝ)
5545unssbd 4169 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴)
56 vex 3463 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
5756snss 4761 . . . . . . . . . . . . . . . 16 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
5855, 57sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦𝐴)
5949ralrimiva 3132 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
6043, 59syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
61 nfcsb1v 3898 . . . . . . . . . . . . . . . . 17 𝑘𝑦 / 𝑘𝐵
6261nfel1 2915 . . . . . . . . . . . . . . . 16 𝑘𝑦 / 𝑘𝐵 ∈ ℂ
63 csbeq1a 3888 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦𝐵 = 𝑦 / 𝑘𝐵)
6463eleq1d 2819 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑘𝐵 ∈ ℂ))
6562, 64rspc 3589 . . . . . . . . . . . . . . 15 (𝑦𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑘𝐵 ∈ ℂ))
6658, 60, 65sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘𝐵 ∈ ℂ)
6766abscld 15455 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℝ)
6852, 54, 67leadd1d 11831 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
69 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
70 disjsn 4687 . . . . . . . . . . . . . . . 16 ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑥)
7169, 70sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∩ {𝑦}) = ∅)
72 eqidd 2736 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦}))
7344, 45ssfid 9273 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ∈ Fin)
7445sselda 3958 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝑘𝐴)
7543, 74, 49syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ ℂ)
7675abscld 15455 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℝ)
7776recnd 11263 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑘 ∈ (𝑥 ∪ {𝑦})) → (abs‘𝐵) ∈ ℂ)
7871, 72, 73, 77fsumsplit 15757 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)))
79 csbfv2g 6925 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
8079elv 3464 . . . . . . . . . . . . . . . . . 18 𝑦 / 𝑘(abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵)
8167recnd 11263 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘𝑦 / 𝑘𝐵) ∈ ℂ)
8280, 81eqeltrid 2838 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ)
83 sumsns 15766 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 / 𝑘(abs‘𝐵) ∈ ℂ) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
8456, 82, 83sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = 𝑦 / 𝑘(abs‘𝐵))
8584, 80eqtrdi 2786 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦} (abs‘𝐵) = (abs‘𝑦 / 𝑘𝐵))
8685oveq2d 7421 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 (abs‘𝐵) + Σ𝑘 ∈ {𝑦} (abs‘𝐵)) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
8778, 86eqtrd 2770 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) = (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵)))
8887breq2d 5131 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ (Σ𝑘𝑥 (abs‘𝐵) + (abs‘𝑦 / 𝑘𝐵))))
8968, 88bitr4d 282 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) ↔ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
9071, 72, 73, 75fsumsplit 15757 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵))
91 sumsns 15766 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴𝑦 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
9258, 66, 91syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ {𝑦}𝐵 = 𝑦 / 𝑘𝐵)
9392oveq2d 7421 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (Σ𝑘𝑥 𝐵 + Σ𝑘 ∈ {𝑦}𝐵) = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
9490, 93eqtrd 2770 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 = (Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵))
9594fveq2d 6880 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) = (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)))
9651, 66abstrid 15475 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘(Σ𝑘𝑥 𝐵 + 𝑦 / 𝑘𝐵)) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9795, 96eqbrtrd 5141 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)))
9873, 75fsumcl 15749 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵 ∈ ℂ)
9998abscld 15455 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ)
10052, 67readdcld 11264 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ)
10173, 76fsumrecl 15750 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ)
102 letr 11329 . . . . . . . . . . . . 13 (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ∈ ℝ ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∈ ℝ ∧ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) ∈ ℝ) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
10399, 100, 101, 102syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ∧ ((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
10497, 103mpand 695 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (((abs‘Σ𝑘𝑥 𝐵) + (abs‘𝑦 / 𝑘𝐵)) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
10589, 104sylbid 240 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))
106105ex 412 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ((abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵) → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
107106a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑦𝑥) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
10842, 107syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵))))
109108expcom 413 . . . . . 6 𝑦𝑥 → (𝜑 → ((𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
110109a2d 29 . . . . 5 𝑦𝑥 → ((𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
111110adantl 481 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → (abs‘Σ𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (abs‘𝐵))) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (abs‘Σ𝑘 ∈ (𝑥 ∪ {𝑦})𝐵) ≤ Σ𝑘 ∈ (𝑥 ∪ {𝑦})(abs‘𝐵)))))
1129, 16, 23, 30, 38, 111findcard2s 9179 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))))
1132, 112mpcom 38 . 2 (𝜑 → (𝐴𝐴 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵)))
1141, 113mpi 20 1 (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  csb 3874  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601   class class class wbr 5119  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  cr 11128  0cc0 11129   + caddc 11132  cle 11270  abscabs 15253  Σcsu 15702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703
This theorem is referenced by:  o1fsum  15829  seqabs  15830  cvgcmpce  15834  mertenslem1  15900  dvfsumabs  25981  mtest  26365  mtestbdd  26366  abelthlem7  26400  fsumharmonic  26974  ftalem1  27035  ftalem5  27039  dchrisumlem2  27453  dchrmusum2  27457  dchrvmasumlem3  27462  dchrvmasumiflem1  27464  dchrisum0lem1  27479  dchrisum0lem2a  27480  mudivsum  27493  mulogsumlem  27494  2vmadivsumlem  27503  selberglem2  27509  selberg3lem1  27520  selberg4lem1  27523  pntrsumbnd  27529  pntrlog2bndlem1  27540  pntrlog2bndlem3  27542  knoppndvlem11  36540  fourierdlem73  46208  etransclem23  46286
  Copyright terms: Public domain W3C validator