Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesevenALTV Structured version   Visualization version   GIF version

Theorem nnsum4primesevenALTV 45983
Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of 4 primes. (Contributed by AV, 27-Jul-2020.)
Assertion
Ref Expression
nnsum4primesevenALTV (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑁,𝑘,𝑚

Proof of Theorem nnsum4primesevenALTV
Dummy variables 𝑜 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 773 . . . . 5 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → ∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ))
2 8nn 12248 . . . . . . . . . 10 8 ∈ ℕ
32nnzi 12527 . . . . . . . . 9 8 ∈ ℤ
43a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ12) → 8 ∈ ℤ)
5 3z 12536 . . . . . . . . 9 3 ∈ ℤ
65a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ12) → 3 ∈ ℤ)
74, 6zaddcld 12611 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → (8 + 3) ∈ ℤ)
8 eluzelz 12773 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℤ)
9 eluz2 12769 . . . . . . . . . 10 (𝑁 ∈ (ℤ12) ↔ (12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁))
10 8p4e12 12700 . . . . . . . . . . . . . 14 (8 + 4) = 12
1110breq1i 5112 . . . . . . . . . . . . 13 ((8 + 4) ≤ 𝑁12 ≤ 𝑁)
12 1nn0 12429 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
13 2nn 12226 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
14 1lt2 12324 . . . . . . . . . . . . . . . 16 1 < 2
1512, 12, 13, 14declt 12646 . . . . . . . . . . . . . . 15 11 < 12
16 8p3e11 12699 . . . . . . . . . . . . . . 15 (8 + 3) = 11
1715, 16, 103brtr4i 5135 . . . . . . . . . . . . . 14 (8 + 3) < (8 + 4)
18 8re 12249 . . . . . . . . . . . . . . . . 17 8 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 8 ∈ ℝ)
20 3re 12233 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
2120a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 3 ∈ ℝ)
2219, 21readdcld 11184 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (8 + 3) ∈ ℝ)
23 4re 12237 . . . . . . . . . . . . . . . . 17 4 ∈ ℝ
2423a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 4 ∈ ℝ)
2519, 24readdcld 11184 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (8 + 4) ∈ ℝ)
26 zre 12503 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
27 ltleletr 11248 . . . . . . . . . . . . . . 15 (((8 + 3) ∈ ℝ ∧ (8 + 4) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((8 + 3) < (8 + 4) ∧ (8 + 4) ≤ 𝑁) → (8 + 3) ≤ 𝑁))
2822, 25, 26, 27syl3anc 1371 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (((8 + 3) < (8 + 4) ∧ (8 + 4) ≤ 𝑁) → (8 + 3) ≤ 𝑁))
2917, 28mpani 694 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((8 + 4) ≤ 𝑁 → (8 + 3) ≤ 𝑁))
3011, 29biimtrrid 242 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (12 ≤ 𝑁 → (8 + 3) ≤ 𝑁))
3130imp 407 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (8 + 3) ≤ 𝑁)
32313adant1 1130 . . . . . . . . . 10 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (8 + 3) ≤ 𝑁)
339, 32sylbi 216 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → (8 + 3) ≤ 𝑁)
34 eluz2 12769 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(8 + 3)) ↔ ((8 + 3) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (8 + 3) ≤ 𝑁))
357, 8, 33, 34syl3anbrc 1343 . . . . . . . 8 (𝑁 ∈ (ℤ12) → 𝑁 ∈ (ℤ‘(8 + 3)))
36 eluzsub 12793 . . . . . . . 8 ((8 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(8 + 3))) → (𝑁 − 3) ∈ (ℤ‘8))
374, 6, 35, 36syl3anc 1371 . . . . . . 7 (𝑁 ∈ (ℤ12) → (𝑁 − 3) ∈ (ℤ‘8))
3837adantr 481 . . . . . 6 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ (ℤ‘8))
3938ad3antlr 729 . . . . 5 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈ (ℤ‘8))
40 3odd 45890 . . . . . . . . . . . 12 3 ∈ Odd
4140a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ12) → 3 ∈ Odd )
4241anim1i 615 . . . . . . . . . 10 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
4342adantl 482 . . . . . . . . 9 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
4443ancomd 462 . . . . . . . 8 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
4544adantr 481 . . . . . . 7 (((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
4645adantr 481 . . . . . 6 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
47 emoo 45886 . . . . . 6 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
4846, 47syl 17 . . . . 5 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈ Odd )
49 nnsum4primesoddALTV 45979 . . . . . 6 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (((𝑁 − 3) ∈ (ℤ‘8) ∧ (𝑁 − 3) ∈ Odd ) → ∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)))
5049imp 407 . . . . 5 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ ((𝑁 − 3) ∈ (ℤ‘8) ∧ (𝑁 − 3) ∈ Odd )) → ∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘))
511, 39, 48, 50syl12anc 835 . . . 4 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘))
52 simpr 485 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 𝑔:(1...3)⟶ℙ)
53 4z 12537 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
54 fzonel 13586 . . . . . . . . . . . . . . . . . 18 ¬ 4 ∈ (1..^4)
55 fzoval 13573 . . . . . . . . . . . . . . . . . . . . . 22 (4 ∈ ℤ → (1..^4) = (1...(4 − 1)))
5653, 55ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (1..^4) = (1...(4 − 1))
57 4cn 12238 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℂ
58 ax-1cn 11109 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
59 3cn 12234 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℂ
60 3p1e4 12298 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 + 1) = 4
61 subadd2 11405 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → ((4 − 1) = 3 ↔ (3 + 1) = 4))
6260, 61mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → (4 − 1) = 3)
6357, 58, 59, 62mp3an 1461 . . . . . . . . . . . . . . . . . . . . . 22 (4 − 1) = 3
6463oveq2i 7368 . . . . . . . . . . . . . . . . . . . . 21 (1...(4 − 1)) = (1...3)
6556, 64eqtri 2764 . . . . . . . . . . . . . . . . . . . 20 (1..^4) = (1...3)
6665eqcomi 2745 . . . . . . . . . . . . . . . . . . 19 (1...3) = (1..^4)
6766eleq2i 2829 . . . . . . . . . . . . . . . . . 18 (4 ∈ (1...3) ↔ 4 ∈ (1..^4))
6854, 67mtbir 322 . . . . . . . . . . . . . . . . 17 ¬ 4 ∈ (1...3)
6953, 68pm3.2i 471 . . . . . . . . . . . . . . . 16 (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3))
7069a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3)))
71 3prm 16570 . . . . . . . . . . . . . . . 16 3 ∈ ℙ
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈ ℙ)
73 fsnunf 7131 . . . . . . . . . . . . . . 15 ((𝑔:(1...3)⟶ℙ ∧ (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3)) ∧ 3 ∈ ℙ) → (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
7452, 70, 72, 73syl3anc 1371 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
75 fzval3 13641 . . . . . . . . . . . . . . . . 17 (4 ∈ ℤ → (1...4) = (1..^(4 + 1)))
7653, 75ax-mp 5 . . . . . . . . . . . . . . . 16 (1...4) = (1..^(4 + 1))
77 1z 12533 . . . . . . . . . . . . . . . . . 18 1 ∈ ℤ
78 1re 11155 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
79 1lt4 12329 . . . . . . . . . . . . . . . . . . 19 1 < 4
8078, 23, 79ltleii 11278 . . . . . . . . . . . . . . . . . 18 1 ≤ 4
81 eluz2 12769 . . . . . . . . . . . . . . . . . 18 (4 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 4 ∈ ℤ ∧ 1 ≤ 4))
8277, 53, 80, 81mpbir3an 1341 . . . . . . . . . . . . . . . . 17 4 ∈ (ℤ‘1)
83 fzosplitsn 13680 . . . . . . . . . . . . . . . . 17 (4 ∈ (ℤ‘1) → (1..^(4 + 1)) = ((1..^4) ∪ {4}))
8482, 83ax-mp 5 . . . . . . . . . . . . . . . 16 (1..^(4 + 1)) = ((1..^4) ∪ {4})
8565uneq1i 4119 . . . . . . . . . . . . . . . 16 ((1..^4) ∪ {4}) = ((1...3) ∪ {4})
8676, 84, 853eqtri 2768 . . . . . . . . . . . . . . 15 (1...4) = ((1...3) ∪ {4})
8786feq2i 6660 . . . . . . . . . . . . . 14 ((𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ ↔ (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
8874, 87sylibr 233 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ)
89 prmex 16553 . . . . . . . . . . . . . . 15 ℙ ∈ V
90 ovex 7390 . . . . . . . . . . . . . . 15 (1...4) ∈ V
9189, 90pm3.2i 471 . . . . . . . . . . . . . 14 (ℙ ∈ V ∧ (1...4) ∈ V)
92 elmapg 8778 . . . . . . . . . . . . . 14 ((ℙ ∈ V ∧ (1...4) ∈ V) → ((𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)) ↔ (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ))
9391, 92mp1i 13 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)) ↔ (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ))
9488, 93mpbird 256 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)))
9594adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)))
96 fveq1 6841 . . . . . . . . . . . . . 14 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → (𝑓𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
9796sumeq2sdv 15589 . . . . . . . . . . . . 13 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → Σ𝑘 ∈ (1...4)(𝑓𝑘) = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
9897eqeq2d 2747 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
9998adantl 482 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) ∧ 𝑓 = (𝑔 ∪ {⟨4, 3⟩})) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
10082a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈ (ℤ‘1))
10186eleq2i 2829 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...4) ↔ 𝑘 ∈ ((1...3) ∪ {4}))
102 elun 4108 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((1...3) ∪ {4}) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 ∈ {4}))
103 velsn 4602 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {4} ↔ 𝑘 = 4)
104103orbi2i 911 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...3) ∨ 𝑘 ∈ {4}) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4))
105101, 102, 1043bitri 296 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...4) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4))
106 elfz2 13431 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...3) ↔ ((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘𝑘 ≤ 3)))
10720, 23pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (3 ∈ ℝ ∧ 4 ∈ ℝ)
108 3lt4 12327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 < 4
109 ltnle 11234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((3 ∈ ℝ ∧ 4 ∈ ℝ) → (3 < 4 ↔ ¬ 4 ≤ 3))
110108, 109mpbii 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((3 ∈ ℝ ∧ 4 ∈ ℝ) → ¬ 4 ≤ 3)
111107, 110ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ¬ 4 ≤ 3
112 breq1 5108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 4 → (𝑘 ≤ 3 ↔ 4 ≤ 3))
113112eqcoms 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (4 = 𝑘 → (𝑘 ≤ 3 ↔ 4 ≤ 3))
114111, 113mtbiri 326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (4 = 𝑘 → ¬ 𝑘 ≤ 3)
115114a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ ℤ → (4 = 𝑘 → ¬ 𝑘 ≤ 3))
116115necon2ad 2958 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℤ → (𝑘 ≤ 3 → 4 ≠ 𝑘))
117116adantld 491 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℤ → ((1 ≤ 𝑘𝑘 ≤ 3) → 4 ≠ 𝑘))
1181173ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((1 ≤ 𝑘𝑘 ≤ 3) → 4 ≠ 𝑘))
119118imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘𝑘 ≤ 3)) → 4 ≠ 𝑘)
120106, 119sylbi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...3) → 4 ≠ 𝑘)
121120adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → 4 ≠ 𝑘)
122 fvunsn 7125 . . . . . . . . . . . . . . . . . . . . . 22 (4 ≠ 𝑘 → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
123121, 122syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
124 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:(1...3)⟶ℙ ∧ 𝑘 ∈ (1...3)) → (𝑔𝑘) ∈ ℙ)
125124ancoms 459 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℙ)
126 prmz 16551 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑘) ∈ ℙ → (𝑔𝑘) ∈ ℤ)
127125, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℤ)
128127zcnd 12608 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℂ)
129123, 128eqeltrd 2838 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
130129ex 413 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...3) → (𝑔:(1...3)⟶ℙ → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
131130adantld 491 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...3) → ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
132 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 4 → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘4))
13353a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → 4 ∈ ℤ)
1345a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → 3 ∈ ℤ)
135 fdm 6677 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:(1...3)⟶ℙ → dom 𝑔 = (1...3))
136 eleq2 2826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑔 = (1...3) → (4 ∈ dom 𝑔 ↔ 4 ∈ (1...3)))
13768, 136mtbiri 326 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom 𝑔 = (1...3) → ¬ 4 ∈ dom 𝑔)
138135, 137syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → ¬ 4 ∈ dom 𝑔)
139 fsnunfv 7133 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℤ ∧ 3 ∈ ℤ ∧ ¬ 4 ∈ dom 𝑔) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
140133, 134, 138, 139syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:(1...3)⟶ℙ → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
141140adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
142132, 141sylan9eq 2796 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = 3)
143142, 59eqeltrdi 2846 . . . . . . . . . . . . . . . . . . 19 ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
144143ex 413 . . . . . . . . . . . . . . . . . 18 (𝑘 = 4 → ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
145131, 144jaoi 855 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
146145com12 32 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
147105, 146biimtrid 241 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑘 ∈ (1...4) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
148147imp 407 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...4)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
149100, 148, 132fsumm1 15636 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
150149adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
15163eqcomi 2745 . . . . . . . . . . . . . . . . . . 19 3 = (4 − 1)
152151oveq2i 7368 . . . . . . . . . . . . . . . . . 18 (1...3) = (1...(4 − 1))
153152a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (1...3) = (1...(4 − 1)))
154120adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → 4 ≠ 𝑘)
155154, 122syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
156155eqcomd 2742 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → (𝑔𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
157153, 156sumeq12dv 15591 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...3)(𝑔𝑘) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
158157eqeq2d 2747 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) ↔ (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
159158biimpa 477 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
160159eqcomd 2742 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑁 − 3))
161160oveq1d 7372 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
16253a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈ ℤ)
1635a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈ ℤ)
164138adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ¬ 4 ∈ dom 𝑔)
165162, 163, 164, 139syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
166165oveq2d 7373 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = ((𝑁 − 3) + 3))
167 eluzelcn 12775 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℂ)
16859a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ12) → 3 ∈ ℂ)
169167, 168npcand 11516 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ12) → ((𝑁 − 3) + 3) = 𝑁)
170169adantr 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + 3) = 𝑁)
171166, 170eqtrd 2776 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = 𝑁)
172171adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = 𝑁)
173150, 161, 1723eqtrrd 2781 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
17495, 99, 173rspcedvd 3583 . . . . . . . . . 10 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
175174ex 413 . . . . . . . . 9 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
176175expcom 414 . . . . . . . 8 (𝑔:(1...3)⟶ℙ → (𝑁 ∈ (ℤ12) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
177 elmapi 8787 . . . . . . . 8 (𝑔 ∈ (ℙ ↑m (1...3)) → 𝑔:(1...3)⟶ℙ)
178176, 177syl11 33 . . . . . . 7 (𝑁 ∈ (ℤ12) → (𝑔 ∈ (ℙ ↑m (1...3)) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
179178rexlimdv 3150 . . . . . 6 (𝑁 ∈ (ℤ12) → (∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
180179adantr 481 . . . . 5 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
181180ad3antlr 729 . . . 4 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
18251, 181mpd 15 . . 3 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
183 evengpoap3 45981 . . . 4 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
184183imp 407 . . 3 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))
185182, 184r19.29a 3159 . 2 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
186185ex 413 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cun 3908  {csn 4586  cop 4592   class class class wbr 5105  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  2c2 12208  3c3 12209  4c4 12210  7c7 12213  8c8 12214  cz 12499  cdc 12618  cuz 12763  ...cfz 13424  ..^cfzo 13567  Σcsu 15570  cprime 16547   Even ceven 45806   Odd codd 45807   GoldbachOdd cgbo 45929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-prm 16548  df-even 45808  df-odd 45809  df-gbo 45932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator