Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesevenALTV Structured version   Visualization version   GIF version

Theorem nnsum4primesevenALTV 42261
Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of 4 primes. (Contributed by AV, 27-Jul-2020.)
Assertion
Ref Expression
nnsum4primesevenALTV (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑁,𝑘,𝑚

Proof of Theorem nnsum4primesevenALTV
Dummy variables 𝑜 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 782 . . . . 5 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → ∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ))
2 8nn 11464 . . . . . . . . . 10 8 ∈ ℕ
32nnzi 11663 . . . . . . . . 9 8 ∈ ℤ
43a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ12) → 8 ∈ ℤ)
5 3z 11672 . . . . . . . . 9 3 ∈ ℤ
65a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ12) → 3 ∈ ℤ)
74, 6zaddcld 11748 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → (8 + 3) ∈ ℤ)
8 eluzelz 11910 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℤ)
9 eluz2 11906 . . . . . . . . . 10 (𝑁 ∈ (ℤ12) ↔ (12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁))
10 8p4e12 11837 . . . . . . . . . . . . . 14 (8 + 4) = 12
1110breq1i 4851 . . . . . . . . . . . . 13 ((8 + 4) ≤ 𝑁12 ≤ 𝑁)
12 1nn0 11571 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
13 2nn 11458 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
14 1lt2 11466 . . . . . . . . . . . . . . . 16 1 < 2
1512, 12, 13, 14declt 11783 . . . . . . . . . . . . . . 15 11 < 12
16 8p3e11 11836 . . . . . . . . . . . . . . 15 (8 + 3) = 11
1715, 16, 103brtr4i 4874 . . . . . . . . . . . . . 14 (8 + 3) < (8 + 4)
18 8re 11385 . . . . . . . . . . . . . . . . 17 8 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 8 ∈ ℝ)
20 3re 11374 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
2120a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 3 ∈ ℝ)
2219, 21readdcld 10350 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (8 + 3) ∈ ℝ)
23 4re 11377 . . . . . . . . . . . . . . . . 17 4 ∈ ℝ
2423a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 4 ∈ ℝ)
2519, 24readdcld 10350 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (8 + 4) ∈ ℝ)
26 zre 11643 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
27 ltleletr 10411 . . . . . . . . . . . . . . 15 (((8 + 3) ∈ ℝ ∧ (8 + 4) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((8 + 3) < (8 + 4) ∧ (8 + 4) ≤ 𝑁) → (8 + 3) ≤ 𝑁))
2822, 25, 26, 27syl3anc 1483 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (((8 + 3) < (8 + 4) ∧ (8 + 4) ≤ 𝑁) → (8 + 3) ≤ 𝑁))
2917, 28mpani 679 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((8 + 4) ≤ 𝑁 → (8 + 3) ≤ 𝑁))
3011, 29syl5bir 234 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (12 ≤ 𝑁 → (8 + 3) ≤ 𝑁))
3130imp 395 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (8 + 3) ≤ 𝑁)
32313adant1 1153 . . . . . . . . . 10 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (8 + 3) ≤ 𝑁)
339, 32sylbi 208 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → (8 + 3) ≤ 𝑁)
34 eluz2 11906 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(8 + 3)) ↔ ((8 + 3) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (8 + 3) ≤ 𝑁))
357, 8, 33, 34syl3anbrc 1436 . . . . . . . 8 (𝑁 ∈ (ℤ12) → 𝑁 ∈ (ℤ‘(8 + 3)))
36 eluzsub 11930 . . . . . . . 8 ((8 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(8 + 3))) → (𝑁 − 3) ∈ (ℤ‘8))
374, 6, 35, 36syl3anc 1483 . . . . . . 7 (𝑁 ∈ (ℤ12) → (𝑁 − 3) ∈ (ℤ‘8))
3837adantr 468 . . . . . 6 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ (ℤ‘8))
3938ad3antlr 713 . . . . 5 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈ (ℤ‘8))
40 3odd 42189 . . . . . . . . . . . 12 3 ∈ Odd
4140a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ12) → 3 ∈ Odd )
4241anim1i 604 . . . . . . . . . 10 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
4342adantl 469 . . . . . . . . 9 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
4443ancomd 451 . . . . . . . 8 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
4544adantr 468 . . . . . . 7 (((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
4645adantr 468 . . . . . 6 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
47 emoo 42185 . . . . . 6 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
4846, 47syl 17 . . . . 5 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈ Odd )
49 nnsum4primesoddALTV 42257 . . . . . 6 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (((𝑁 − 3) ∈ (ℤ‘8) ∧ (𝑁 − 3) ∈ Odd ) → ∃𝑔 ∈ (ℙ ↑𝑚 (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)))
5049imp 395 . . . . 5 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ ((𝑁 − 3) ∈ (ℤ‘8) ∧ (𝑁 − 3) ∈ Odd )) → ∃𝑔 ∈ (ℙ ↑𝑚 (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘))
511, 39, 48, 50syl12anc 856 . . . 4 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑔 ∈ (ℙ ↑𝑚 (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘))
52 simpr 473 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 𝑔:(1...3)⟶ℙ)
53 4z 11673 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
54 fzonel 12703 . . . . . . . . . . . . . . . . . 18 ¬ 4 ∈ (1..^4)
55 fzoval 12691 . . . . . . . . . . . . . . . . . . . . . 22 (4 ∈ ℤ → (1..^4) = (1...(4 − 1)))
5653, 55ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (1..^4) = (1...(4 − 1))
57 4cn 11378 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℂ
58 ax-1cn 10275 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
59 3cn 11375 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℂ
60 3p1e4 11432 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 + 1) = 4
61 subadd2 10566 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → ((4 − 1) = 3 ↔ (3 + 1) = 4))
6260, 61mpbiri 249 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → (4 − 1) = 3)
6357, 58, 59, 62mp3an 1578 . . . . . . . . . . . . . . . . . . . . . 22 (4 − 1) = 3
6463oveq2i 6881 . . . . . . . . . . . . . . . . . . . . 21 (1...(4 − 1)) = (1...3)
6556, 64eqtri 2828 . . . . . . . . . . . . . . . . . . . 20 (1..^4) = (1...3)
6665eqcomi 2815 . . . . . . . . . . . . . . . . . . 19 (1...3) = (1..^4)
6766eleq2i 2877 . . . . . . . . . . . . . . . . . 18 (4 ∈ (1...3) ↔ 4 ∈ (1..^4))
6854, 67mtbir 314 . . . . . . . . . . . . . . . . 17 ¬ 4 ∈ (1...3)
6953, 68pm3.2i 458 . . . . . . . . . . . . . . . 16 (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3))
7069a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3)))
71 3prm 15620 . . . . . . . . . . . . . . . 16 3 ∈ ℙ
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈ ℙ)
73 fsnunf 6672 . . . . . . . . . . . . . . 15 ((𝑔:(1...3)⟶ℙ ∧ (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3)) ∧ 3 ∈ ℙ) → (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
7452, 70, 72, 73syl3anc 1483 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
75 fzval3 12757 . . . . . . . . . . . . . . . . 17 (4 ∈ ℤ → (1...4) = (1..^(4 + 1)))
7653, 75ax-mp 5 . . . . . . . . . . . . . . . 16 (1...4) = (1..^(4 + 1))
77 1z 11669 . . . . . . . . . . . . . . . . . 18 1 ∈ ℤ
78 1re 10321 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
79 1lt4 11471 . . . . . . . . . . . . . . . . . . 19 1 < 4
8078, 23, 79ltleii 10441 . . . . . . . . . . . . . . . . . 18 1 ≤ 4
81 eluz2 11906 . . . . . . . . . . . . . . . . . 18 (4 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 4 ∈ ℤ ∧ 1 ≤ 4))
8277, 53, 80, 81mpbir3an 1434 . . . . . . . . . . . . . . . . 17 4 ∈ (ℤ‘1)
83 fzosplitsn 12796 . . . . . . . . . . . . . . . . 17 (4 ∈ (ℤ‘1) → (1..^(4 + 1)) = ((1..^4) ∪ {4}))
8482, 83ax-mp 5 . . . . . . . . . . . . . . . 16 (1..^(4 + 1)) = ((1..^4) ∪ {4})
8565uneq1i 3962 . . . . . . . . . . . . . . . 16 ((1..^4) ∪ {4}) = ((1...3) ∪ {4})
8676, 84, 853eqtri 2832 . . . . . . . . . . . . . . 15 (1...4) = ((1...3) ∪ {4})
8786feq2i 6244 . . . . . . . . . . . . . 14 ((𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ ↔ (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
8874, 87sylibr 225 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ)
89 prmex 15605 . . . . . . . . . . . . . . 15 ℙ ∈ V
90 ovex 6902 . . . . . . . . . . . . . . 15 (1...4) ∈ V
9189, 90pm3.2i 458 . . . . . . . . . . . . . 14 (ℙ ∈ V ∧ (1...4) ∈ V)
92 elmapg 8101 . . . . . . . . . . . . . 14 ((ℙ ∈ V ∧ (1...4) ∈ V) → ((𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑𝑚 (1...4)) ↔ (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ))
9391, 92mp1i 13 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑𝑚 (1...4)) ↔ (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ))
9488, 93mpbird 248 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑𝑚 (1...4)))
9594adantr 468 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑𝑚 (1...4)))
96 fveq1 6403 . . . . . . . . . . . . . 14 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → (𝑓𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
9796sumeq2sdv 14654 . . . . . . . . . . . . 13 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → Σ𝑘 ∈ (1...4)(𝑓𝑘) = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
9897eqeq2d 2816 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
9998adantl 469 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) ∧ 𝑓 = (𝑔 ∪ {⟨4, 3⟩})) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
10082a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈ (ℤ‘1))
10186eleq2i 2877 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...4) ↔ 𝑘 ∈ ((1...3) ∪ {4}))
102 elun 3952 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((1...3) ∪ {4}) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 ∈ {4}))
103 velsn 4386 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {4} ↔ 𝑘 = 4)
104103orbi2i 927 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...3) ∨ 𝑘 ∈ {4}) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4))
105101, 102, 1043bitri 288 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...4) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4))
106 elfz2 12552 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...3) ↔ ((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘𝑘 ≤ 3)))
10720, 23pm3.2i 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (3 ∈ ℝ ∧ 4 ∈ ℝ)
108 3lt4 11469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 < 4
109 ltnle 10398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((3 ∈ ℝ ∧ 4 ∈ ℝ) → (3 < 4 ↔ ¬ 4 ≤ 3))
110108, 109mpbii 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((3 ∈ ℝ ∧ 4 ∈ ℝ) → ¬ 4 ≤ 3)
111107, 110ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ¬ 4 ≤ 3
112 breq1 4847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 4 → (𝑘 ≤ 3 ↔ 4 ≤ 3))
113112eqcoms 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (4 = 𝑘 → (𝑘 ≤ 3 ↔ 4 ≤ 3))
114111, 113mtbiri 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (4 = 𝑘 → ¬ 𝑘 ≤ 3)
115114a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ ℤ → (4 = 𝑘 → ¬ 𝑘 ≤ 3))
116115necon2ad 2993 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℤ → (𝑘 ≤ 3 → 4 ≠ 𝑘))
117116adantld 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℤ → ((1 ≤ 𝑘𝑘 ≤ 3) → 4 ≠ 𝑘))
1181173ad2ant3 1158 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((1 ≤ 𝑘𝑘 ≤ 3) → 4 ≠ 𝑘))
119118imp 395 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘𝑘 ≤ 3)) → 4 ≠ 𝑘)
120106, 119sylbi 208 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...3) → 4 ≠ 𝑘)
121120adantr 468 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → 4 ≠ 𝑘)
122 fvunsn 6666 . . . . . . . . . . . . . . . . . . . . . 22 (4 ≠ 𝑘 → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
123121, 122syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
124 ffvelrn 6575 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:(1...3)⟶ℙ ∧ 𝑘 ∈ (1...3)) → (𝑔𝑘) ∈ ℙ)
125124ancoms 448 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℙ)
126 prmz 15603 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑘) ∈ ℙ → (𝑔𝑘) ∈ ℤ)
127125, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℤ)
128127zcnd 11745 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℂ)
129123, 128eqeltrd 2885 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
130129ex 399 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...3) → (𝑔:(1...3)⟶ℙ → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
131130adantld 480 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...3) → ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
132 fveq2 6404 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 4 → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘4))
13353a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → 4 ∈ ℤ)
1345a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → 3 ∈ ℤ)
135 fdm 6260 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:(1...3)⟶ℙ → dom 𝑔 = (1...3))
136 eleq2 2874 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑔 = (1...3) → (4 ∈ dom 𝑔 ↔ 4 ∈ (1...3)))
13768, 136mtbiri 318 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom 𝑔 = (1...3) → ¬ 4 ∈ dom 𝑔)
138135, 137syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → ¬ 4 ∈ dom 𝑔)
139 fsnunfv 6674 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℤ ∧ 3 ∈ ℤ ∧ ¬ 4 ∈ dom 𝑔) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
140133, 134, 138, 139syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:(1...3)⟶ℙ → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
141140adantl 469 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
142132, 141sylan9eq 2860 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = 3)
143142, 59syl6eqel 2893 . . . . . . . . . . . . . . . . . . 19 ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
144143ex 399 . . . . . . . . . . . . . . . . . 18 (𝑘 = 4 → ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
145131, 144jaoi 875 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
146145com12 32 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
147105, 146syl5bi 233 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑘 ∈ (1...4) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
148147imp 395 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...4)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
149100, 148, 132fsumm1 14699 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
150149adantr 468 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
15163eqcomi 2815 . . . . . . . . . . . . . . . . . . 19 3 = (4 − 1)
152151oveq2i 6881 . . . . . . . . . . . . . . . . . 18 (1...3) = (1...(4 − 1))
153152a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (1...3) = (1...(4 − 1)))
154120adantl 469 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → 4 ≠ 𝑘)
155154, 122syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
156155eqcomd 2812 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → (𝑔𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
157153, 156sumeq12dv 14656 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...3)(𝑔𝑘) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
158157eqeq2d 2816 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) ↔ (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
159158biimpa 464 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
160159eqcomd 2812 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑁 − 3))
161160oveq1d 6885 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
16253a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈ ℤ)
1635a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈ ℤ)
164138adantl 469 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ¬ 4 ∈ dom 𝑔)
165162, 163, 164, 139syl3anc 1483 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
166165oveq2d 6886 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = ((𝑁 − 3) + 3))
167 eluzelcn 11912 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℂ)
16859a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ12) → 3 ∈ ℂ)
169167, 168npcand 10677 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ12) → ((𝑁 − 3) + 3) = 𝑁)
170169adantr 468 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + 3) = 𝑁)
171166, 170eqtrd 2840 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = 𝑁)
172171adantr 468 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = 𝑁)
173150, 161, 1723eqtrrd 2845 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
17495, 99, 173rspcedvd 3509 . . . . . . . . . 10 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
175174ex 399 . . . . . . . . 9 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
176175expcom 400 . . . . . . . 8 (𝑔:(1...3)⟶ℙ → (𝑁 ∈ (ℤ12) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
177 elmapi 8110 . . . . . . . 8 (𝑔 ∈ (ℙ ↑𝑚 (1...3)) → 𝑔:(1...3)⟶ℙ)
178176, 177syl11 33 . . . . . . 7 (𝑁 ∈ (ℤ12) → (𝑔 ∈ (ℙ ↑𝑚 (1...3)) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
179178rexlimdv 3218 . . . . . 6 (𝑁 ∈ (ℤ12) → (∃𝑔 ∈ (ℙ ↑𝑚 (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
180179adantr 468 . . . . 5 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (∃𝑔 ∈ (ℙ ↑𝑚 (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
181180ad3antlr 713 . . . 4 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (∃𝑔 ∈ (ℙ ↑𝑚 (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
18251, 181mpd 15 . . 3 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
183 evengpoap3 42259 . . . 4 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
184183imp 395 . . 3 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))
185182, 184r19.29a 3266 . 2 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
186185ex 399 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wral 3096  wrex 3097  Vcvv 3391  cun 3767  {csn 4370  cop 4376   class class class wbr 4844  dom cdm 5311  wf 6093  cfv 6097  (class class class)co 6870  𝑚 cmap 8088  cc 10215  cr 10216  1c1 10218   + caddc 10220   < clt 10355  cle 10356  cmin 10547  2c2 11352  3c3 11353  4c4 11354  7c7 11357  8c8 11358  cz 11639  cdc 11755  cuz 11900  ...cfz 12545  ..^cfzo 12685  Σcsu 14635  cprime 15599   Even ceven 42109   Odd codd 42110   GoldbachOdd cgbo 42207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-inf2 8781  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-isom 6106  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-2o 7793  df-oadd 7796  df-er 7975  df-map 8090  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-sup 8583  df-inf 8584  df-oi 8650  df-card 9044  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-z 11640  df-dec 11756  df-uz 11901  df-rp 12043  df-fz 12546  df-fzo 12686  df-seq 13021  df-exp 13080  df-hash 13334  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-dvds 15200  df-prm 15600  df-even 42111  df-odd 42112  df-gbo 42210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator