Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesevenALTV Structured version   Visualization version   GIF version

Theorem nnsum4primesevenALTV 43986
Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of 4 primes. (Contributed by AV, 27-Jul-2020.)
Assertion
Ref Expression
nnsum4primesevenALTV (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑁,𝑘,𝑚

Proof of Theorem nnsum4primesevenALTV
Dummy variables 𝑜 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 773 . . . . 5 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → ∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ))
2 8nn 11733 . . . . . . . . . 10 8 ∈ ℕ
32nnzi 12007 . . . . . . . . 9 8 ∈ ℤ
43a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ12) → 8 ∈ ℤ)
5 3z 12016 . . . . . . . . 9 3 ∈ ℤ
65a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ12) → 3 ∈ ℤ)
74, 6zaddcld 12092 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → (8 + 3) ∈ ℤ)
8 eluzelz 12254 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℤ)
9 eluz2 12250 . . . . . . . . . 10 (𝑁 ∈ (ℤ12) ↔ (12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁))
10 8p4e12 12181 . . . . . . . . . . . . . 14 (8 + 4) = 12
1110breq1i 5073 . . . . . . . . . . . . 13 ((8 + 4) ≤ 𝑁12 ≤ 𝑁)
12 1nn0 11914 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
13 2nn 11711 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
14 1lt2 11809 . . . . . . . . . . . . . . . 16 1 < 2
1512, 12, 13, 14declt 12127 . . . . . . . . . . . . . . 15 11 < 12
16 8p3e11 12180 . . . . . . . . . . . . . . 15 (8 + 3) = 11
1715, 16, 103brtr4i 5096 . . . . . . . . . . . . . 14 (8 + 3) < (8 + 4)
18 8re 11734 . . . . . . . . . . . . . . . . 17 8 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 8 ∈ ℝ)
20 3re 11718 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
2120a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 3 ∈ ℝ)
2219, 21readdcld 10670 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (8 + 3) ∈ ℝ)
23 4re 11722 . . . . . . . . . . . . . . . . 17 4 ∈ ℝ
2423a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 4 ∈ ℝ)
2519, 24readdcld 10670 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (8 + 4) ∈ ℝ)
26 zre 11986 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
27 ltleletr 10733 . . . . . . . . . . . . . . 15 (((8 + 3) ∈ ℝ ∧ (8 + 4) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((8 + 3) < (8 + 4) ∧ (8 + 4) ≤ 𝑁) → (8 + 3) ≤ 𝑁))
2822, 25, 26, 27syl3anc 1367 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (((8 + 3) < (8 + 4) ∧ (8 + 4) ≤ 𝑁) → (8 + 3) ≤ 𝑁))
2917, 28mpani 694 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((8 + 4) ≤ 𝑁 → (8 + 3) ≤ 𝑁))
3011, 29syl5bir 245 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (12 ≤ 𝑁 → (8 + 3) ≤ 𝑁))
3130imp 409 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (8 + 3) ≤ 𝑁)
32313adant1 1126 . . . . . . . . . 10 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (8 + 3) ≤ 𝑁)
339, 32sylbi 219 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → (8 + 3) ≤ 𝑁)
34 eluz2 12250 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(8 + 3)) ↔ ((8 + 3) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (8 + 3) ≤ 𝑁))
357, 8, 33, 34syl3anbrc 1339 . . . . . . . 8 (𝑁 ∈ (ℤ12) → 𝑁 ∈ (ℤ‘(8 + 3)))
36 eluzsub 12275 . . . . . . . 8 ((8 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(8 + 3))) → (𝑁 − 3) ∈ (ℤ‘8))
374, 6, 35, 36syl3anc 1367 . . . . . . 7 (𝑁 ∈ (ℤ12) → (𝑁 − 3) ∈ (ℤ‘8))
3837adantr 483 . . . . . 6 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ (ℤ‘8))
3938ad3antlr 729 . . . . 5 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈ (ℤ‘8))
40 3odd 43893 . . . . . . . . . . . 12 3 ∈ Odd
4140a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ12) → 3 ∈ Odd )
4241anim1i 616 . . . . . . . . . 10 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
4342adantl 484 . . . . . . . . 9 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
4443ancomd 464 . . . . . . . 8 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
4544adantr 483 . . . . . . 7 (((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
4645adantr 483 . . . . . 6 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
47 emoo 43889 . . . . . 6 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
4846, 47syl 17 . . . . 5 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈ Odd )
49 nnsum4primesoddALTV 43982 . . . . . 6 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (((𝑁 − 3) ∈ (ℤ‘8) ∧ (𝑁 − 3) ∈ Odd ) → ∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)))
5049imp 409 . . . . 5 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ ((𝑁 − 3) ∈ (ℤ‘8) ∧ (𝑁 − 3) ∈ Odd )) → ∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘))
511, 39, 48, 50syl12anc 834 . . . 4 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘))
52 simpr 487 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 𝑔:(1...3)⟶ℙ)
53 4z 12017 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
54 fzonel 13052 . . . . . . . . . . . . . . . . . 18 ¬ 4 ∈ (1..^4)
55 fzoval 13040 . . . . . . . . . . . . . . . . . . . . . 22 (4 ∈ ℤ → (1..^4) = (1...(4 − 1)))
5653, 55ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (1..^4) = (1...(4 − 1))
57 4cn 11723 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℂ
58 ax-1cn 10595 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
59 3cn 11719 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℂ
60 3p1e4 11783 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 + 1) = 4
61 subadd2 10890 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → ((4 − 1) = 3 ↔ (3 + 1) = 4))
6260, 61mpbiri 260 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → (4 − 1) = 3)
6357, 58, 59, 62mp3an 1457 . . . . . . . . . . . . . . . . . . . . . 22 (4 − 1) = 3
6463oveq2i 7167 . . . . . . . . . . . . . . . . . . . . 21 (1...(4 − 1)) = (1...3)
6556, 64eqtri 2844 . . . . . . . . . . . . . . . . . . . 20 (1..^4) = (1...3)
6665eqcomi 2830 . . . . . . . . . . . . . . . . . . 19 (1...3) = (1..^4)
6766eleq2i 2904 . . . . . . . . . . . . . . . . . 18 (4 ∈ (1...3) ↔ 4 ∈ (1..^4))
6854, 67mtbir 325 . . . . . . . . . . . . . . . . 17 ¬ 4 ∈ (1...3)
6953, 68pm3.2i 473 . . . . . . . . . . . . . . . 16 (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3))
7069a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3)))
71 3prm 16038 . . . . . . . . . . . . . . . 16 3 ∈ ℙ
7271a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈ ℙ)
73 fsnunf 6947 . . . . . . . . . . . . . . 15 ((𝑔:(1...3)⟶ℙ ∧ (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3)) ∧ 3 ∈ ℙ) → (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
7452, 70, 72, 73syl3anc 1367 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
75 fzval3 13107 . . . . . . . . . . . . . . . . 17 (4 ∈ ℤ → (1...4) = (1..^(4 + 1)))
7653, 75ax-mp 5 . . . . . . . . . . . . . . . 16 (1...4) = (1..^(4 + 1))
77 1z 12013 . . . . . . . . . . . . . . . . . 18 1 ∈ ℤ
78 1re 10641 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
79 1lt4 11814 . . . . . . . . . . . . . . . . . . 19 1 < 4
8078, 23, 79ltleii 10763 . . . . . . . . . . . . . . . . . 18 1 ≤ 4
81 eluz2 12250 . . . . . . . . . . . . . . . . . 18 (4 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 4 ∈ ℤ ∧ 1 ≤ 4))
8277, 53, 80, 81mpbir3an 1337 . . . . . . . . . . . . . . . . 17 4 ∈ (ℤ‘1)
83 fzosplitsn 13146 . . . . . . . . . . . . . . . . 17 (4 ∈ (ℤ‘1) → (1..^(4 + 1)) = ((1..^4) ∪ {4}))
8482, 83ax-mp 5 . . . . . . . . . . . . . . . 16 (1..^(4 + 1)) = ((1..^4) ∪ {4})
8565uneq1i 4135 . . . . . . . . . . . . . . . 16 ((1..^4) ∪ {4}) = ((1...3) ∪ {4})
8676, 84, 853eqtri 2848 . . . . . . . . . . . . . . 15 (1...4) = ((1...3) ∪ {4})
8786feq2i 6506 . . . . . . . . . . . . . 14 ((𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ ↔ (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
8874, 87sylibr 236 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ)
89 prmex 16021 . . . . . . . . . . . . . . 15 ℙ ∈ V
90 ovex 7189 . . . . . . . . . . . . . . 15 (1...4) ∈ V
9189, 90pm3.2i 473 . . . . . . . . . . . . . 14 (ℙ ∈ V ∧ (1...4) ∈ V)
92 elmapg 8419 . . . . . . . . . . . . . 14 ((ℙ ∈ V ∧ (1...4) ∈ V) → ((𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)) ↔ (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ))
9391, 92mp1i 13 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)) ↔ (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ))
9488, 93mpbird 259 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)))
9594adantr 483 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)))
96 fveq1 6669 . . . . . . . . . . . . . 14 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → (𝑓𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
9796sumeq2sdv 15061 . . . . . . . . . . . . 13 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → Σ𝑘 ∈ (1...4)(𝑓𝑘) = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
9897eqeq2d 2832 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
9998adantl 484 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) ∧ 𝑓 = (𝑔 ∪ {⟨4, 3⟩})) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
10082a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈ (ℤ‘1))
10186eleq2i 2904 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...4) ↔ 𝑘 ∈ ((1...3) ∪ {4}))
102 elun 4125 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((1...3) ∪ {4}) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 ∈ {4}))
103 velsn 4583 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {4} ↔ 𝑘 = 4)
104103orbi2i 909 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...3) ∨ 𝑘 ∈ {4}) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4))
105101, 102, 1043bitri 299 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...4) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4))
106 elfz2 12900 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...3) ↔ ((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘𝑘 ≤ 3)))
10720, 23pm3.2i 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (3 ∈ ℝ ∧ 4 ∈ ℝ)
108 3lt4 11812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 < 4
109 ltnle 10720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((3 ∈ ℝ ∧ 4 ∈ ℝ) → (3 < 4 ↔ ¬ 4 ≤ 3))
110108, 109mpbii 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((3 ∈ ℝ ∧ 4 ∈ ℝ) → ¬ 4 ≤ 3)
111107, 110ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ¬ 4 ≤ 3
112 breq1 5069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 4 → (𝑘 ≤ 3 ↔ 4 ≤ 3))
113112eqcoms 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (4 = 𝑘 → (𝑘 ≤ 3 ↔ 4 ≤ 3))
114111, 113mtbiri 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (4 = 𝑘 → ¬ 𝑘 ≤ 3)
115114a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ ℤ → (4 = 𝑘 → ¬ 𝑘 ≤ 3))
116115necon2ad 3031 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℤ → (𝑘 ≤ 3 → 4 ≠ 𝑘))
117116adantld 493 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℤ → ((1 ≤ 𝑘𝑘 ≤ 3) → 4 ≠ 𝑘))
1181173ad2ant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((1 ≤ 𝑘𝑘 ≤ 3) → 4 ≠ 𝑘))
119118imp 409 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘𝑘 ≤ 3)) → 4 ≠ 𝑘)
120106, 119sylbi 219 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...3) → 4 ≠ 𝑘)
121120adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → 4 ≠ 𝑘)
122 fvunsn 6941 . . . . . . . . . . . . . . . . . . . . . 22 (4 ≠ 𝑘 → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
123121, 122syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
124 ffvelrn 6849 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:(1...3)⟶ℙ ∧ 𝑘 ∈ (1...3)) → (𝑔𝑘) ∈ ℙ)
125124ancoms 461 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℙ)
126 prmz 16019 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑘) ∈ ℙ → (𝑔𝑘) ∈ ℤ)
127125, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℤ)
128127zcnd 12089 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℂ)
129123, 128eqeltrd 2913 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
130129ex 415 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...3) → (𝑔:(1...3)⟶ℙ → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
131130adantld 493 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...3) → ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
132 fveq2 6670 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 4 → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘4))
13353a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → 4 ∈ ℤ)
1345a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → 3 ∈ ℤ)
135 fdm 6522 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:(1...3)⟶ℙ → dom 𝑔 = (1...3))
136 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑔 = (1...3) → (4 ∈ dom 𝑔 ↔ 4 ∈ (1...3)))
13768, 136mtbiri 329 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom 𝑔 = (1...3) → ¬ 4 ∈ dom 𝑔)
138135, 137syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → ¬ 4 ∈ dom 𝑔)
139 fsnunfv 6949 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℤ ∧ 3 ∈ ℤ ∧ ¬ 4 ∈ dom 𝑔) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
140133, 134, 138, 139syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:(1...3)⟶ℙ → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
141140adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
142132, 141sylan9eq 2876 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = 3)
143142, 59eqeltrdi 2921 . . . . . . . . . . . . . . . . . . 19 ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
144143ex 415 . . . . . . . . . . . . . . . . . 18 (𝑘 = 4 → ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
145131, 144jaoi 853 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
146145com12 32 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
147105, 146syl5bi 244 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (𝑘 ∈ (1...4) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
148147imp 409 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...4)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
149100, 148, 132fsumm1 15106 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
150149adantr 483 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
15163eqcomi 2830 . . . . . . . . . . . . . . . . . . 19 3 = (4 − 1)
152151oveq2i 7167 . . . . . . . . . . . . . . . . . 18 (1...3) = (1...(4 − 1))
153152a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → (1...3) = (1...(4 − 1)))
154120adantl 484 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → 4 ≠ 𝑘)
155154, 122syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
156155eqcomd 2827 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → (𝑔𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
157153, 156sumeq12dv 15063 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...3)(𝑔𝑘) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
158157eqeq2d 2832 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) ↔ (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
159158biimpa 479 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
160159eqcomd 2827 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑁 − 3))
161160oveq1d 7171 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
16253a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈ ℤ)
1635a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈ ℤ)
164138adantl 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ¬ 4 ∈ dom 𝑔)
165162, 163, 164, 139syl3anc 1367 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
166165oveq2d 7172 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = ((𝑁 − 3) + 3))
167 eluzelcn 12256 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℂ)
16859a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ12) → 3 ∈ ℂ)
169167, 168npcand 11001 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ12) → ((𝑁 − 3) + 3) = 𝑁)
170169adantr 483 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + 3) = 𝑁)
171166, 170eqtrd 2856 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = 𝑁)
172171adantr 483 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = 𝑁)
173150, 161, 1723eqtrrd 2861 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
17495, 99, 173rspcedvd 3626 . . . . . . . . . 10 (((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
175174ex 415 . . . . . . . . 9 ((𝑁 ∈ (ℤ12) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
176175expcom 416 . . . . . . . 8 (𝑔:(1...3)⟶ℙ → (𝑁 ∈ (ℤ12) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
177 elmapi 8428 . . . . . . . 8 (𝑔 ∈ (ℙ ↑m (1...3)) → 𝑔:(1...3)⟶ℙ)
178176, 177syl11 33 . . . . . . 7 (𝑁 ∈ (ℤ12) → (𝑔 ∈ (ℙ ↑m (1...3)) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
179178rexlimdv 3283 . . . . . 6 (𝑁 ∈ (ℤ12) → (∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
180179adantr 483 . . . . 5 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
181180ad3antlr 729 . . . 4 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → (∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
18251, 181mpd 15 . . 3 ((((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
183 evengpoap3 43984 . . . 4 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
184183imp 409 . . 3 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))
185182, 184r19.29a 3289 . 2 ((∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) ∧ (𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even )) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
186185ex 415 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cun 3934  {csn 4567  cop 4573   class class class wbr 5066  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  cc 10535  cr 10536  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cmin 10870  2c2 11693  3c3 11694  4c4 11695  7c7 11698  8c8 11699  cz 11982  cdc 12099  cuz 12244  ...cfz 12893  ..^cfzo 13034  Σcsu 15042  cprime 16015   Even ceven 43809   Odd codd 43810   GoldbachOdd cgbo 43932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-dvds 15608  df-prm 16016  df-even 43811  df-odd 43812  df-gbo 43935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator