MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decltc Structured version   Visualization version   GIF version

Theorem decltc 12730
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
declt.a 𝐴 ∈ ℕ0
declt.b 𝐵 ∈ ℕ0
decltc.c 𝐶 ∈ ℕ0
decltc.d 𝐷 ∈ ℕ0
decltc.s 𝐶 < 10
decltc.l 𝐴 < 𝐵
Assertion
Ref Expression
decltc 𝐴𝐶 < 𝐵𝐷

Proof of Theorem decltc
StepHypRef Expression
1 10nn 12717 . . 3 10 ∈ ℕ
2 declt.a . . 3 𝐴 ∈ ℕ0
3 declt.b . . 3 𝐵 ∈ ℕ0
4 decltc.c . . 3 𝐶 ∈ ℕ0
5 decltc.d . . 3 𝐷 ∈ ℕ0
6 decltc.s . . 3 𝐶 < 10
7 decltc.l . . 3 𝐴 < 𝐵
81, 2, 3, 4, 5, 6, 7numltc 12727 . 2 ((10 · 𝐴) + 𝐶) < ((10 · 𝐵) + 𝐷)
9 dfdec10 12704 . 2 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
10 dfdec10 12704 . 2 𝐵𝐷 = ((10 · 𝐵) + 𝐷)
118, 9, 103brtr4i 5147 1 𝐴𝐶 < 𝐵𝐷
Colors of variables: wff setvar class
Syntax hints:  wcel 2107   class class class wbr 5117  (class class class)co 7400  0cc0 11122  1c1 11123   + caddc 11125   · cmul 11127   < clt 11262  0cn0 12494  cdc 12701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702
This theorem is referenced by:  declth  12731  3decltc  12734  2expltfac  17099  11prm  17121  13prm  17122  17prm  17123  19prm  17124  37prm  17127  43prm  17128  83prm  17129  317prm  17132  631prm  17133  2503prm  17146  4001prm  17151  log2ub  26897  bclbnd  27229  bpos1  27232  bposlem8  27240  9p10ne21  30385  hgt750lemd  34609  hgt750lem  34612  3lexlogpow5ineq1  41996  3lexlogpow5ineq2  41997  3lexlogpow2ineq1  42000  3lexlogpow5ineq5  42002  aks4d1p1  42018  fmtno4nprmfac193  47514  127prm  47539  tgoldbach  47757
  Copyright terms: Public domain W3C validator