MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmblolbii Structured version   Visualization version   GIF version

Theorem nmblolbii 29161
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmblolbi.1 𝑋 = (BaseSet‘𝑈)
nmblolbi.4 𝐿 = (normCV𝑈)
nmblolbi.5 𝑀 = (normCV𝑊)
nmblolbi.6 𝑁 = (𝑈 normOpOLD 𝑊)
nmblolbi.7 𝐵 = (𝑈 BLnOp 𝑊)
nmblolbi.u 𝑈 ∈ NrmCVec
nmblolbi.w 𝑊 ∈ NrmCVec
nmblolbii.b 𝑇𝐵
Assertion
Ref Expression
nmblolbii (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))

Proof of Theorem nmblolbii
StepHypRef Expression
1 fveq2 6774 . . . 4 (𝐴 = (0vec𝑈) → (𝑇𝐴) = (𝑇‘(0vec𝑈)))
21fveq2d 6778 . . 3 (𝐴 = (0vec𝑈) → (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇‘(0vec𝑈))))
3 fveq2 6774 . . . 4 (𝐴 = (0vec𝑈) → (𝐿𝐴) = (𝐿‘(0vec𝑈)))
43oveq2d 7291 . . 3 (𝐴 = (0vec𝑈) → ((𝑁𝑇) · (𝐿𝐴)) = ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
52, 4breq12d 5087 . 2 (𝐴 = (0vec𝑈) → ((𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)) ↔ (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))))
6 nmblolbi.u . . . . . . . . 9 𝑈 ∈ NrmCVec
7 nmblolbi.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
8 nmblolbi.4 . . . . . . . . . 10 𝐿 = (normCV𝑈)
97, 8nvcl 29023 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐿𝐴) ∈ ℝ)
106, 9mpan 687 . . . . . . . 8 (𝐴𝑋 → (𝐿𝐴) ∈ ℝ)
1110adantr 481 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℝ)
12 eqid 2738 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
137, 12, 8nvz 29031 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
146, 13mpan 687 . . . . . . . . 9 (𝐴𝑋 → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
1514necon3bid 2988 . . . . . . . 8 (𝐴𝑋 → ((𝐿𝐴) ≠ 0 ↔ 𝐴 ≠ (0vec𝑈)))
1615biimpar 478 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ≠ 0)
1711, 16rereccld 11802 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℝ)
187, 12, 8nvgt0 29036 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
196, 18mpan 687 . . . . . . . . 9 (𝐴𝑋 → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
2019biimpa 477 . . . . . . . 8 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (𝐿𝐴))
2111, 20recgt0d 11909 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (1 / (𝐿𝐴)))
22 0re 10977 . . . . . . . 8 0 ∈ ℝ
23 ltle 11063 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / (𝐿𝐴)) ∈ ℝ) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2422, 17, 23sylancr 587 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2521, 24mpd 15 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 ≤ (1 / (𝐿𝐴)))
26 nmblolbi.w . . . . . . . . 9 𝑊 ∈ NrmCVec
27 nmblolbii.b . . . . . . . . 9 𝑇𝐵
28 eqid 2738 . . . . . . . . . 10 (BaseSet‘𝑊) = (BaseSet‘𝑊)
29 nmblolbi.7 . . . . . . . . . 10 𝐵 = (𝑈 BLnOp 𝑊)
307, 28, 29blof 29147 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋⟶(BaseSet‘𝑊))
316, 26, 27, 30mp3an 1460 . . . . . . . 8 𝑇:𝑋⟶(BaseSet‘𝑊)
3231ffvelrni 6960 . . . . . . 7 (𝐴𝑋 → (𝑇𝐴) ∈ (BaseSet‘𝑊))
3332adantr 481 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
34 eqid 2738 . . . . . . . 8 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
35 nmblolbi.5 . . . . . . . 8 𝑀 = (normCV𝑊)
3628, 34, 35nvsge0 29026 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3726, 36mp3an1 1447 . . . . . 6 ((((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3817, 25, 33, 37syl21anc 835 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3917recnd 11003 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℂ)
40 simpl 483 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 𝐴𝑋)
41 eqid 2738 . . . . . . . . . . 11 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
4241, 29bloln 29146 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
436, 26, 27, 42mp3an 1460 . . . . . . . . 9 𝑇 ∈ (𝑈 LnOp 𝑊)
446, 26, 433pm3.2i 1338 . . . . . . . 8 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊))
45 eqid 2738 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
467, 45, 34, 41lnomul 29122 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ ((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4744, 46mpan 687 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4839, 40, 47syl2anc 584 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4948fveq2d 6778 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) = (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))))
5028, 35nvcl 29023 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5126, 32, 50sylancr 587 . . . . . . . 8 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5251adantr 481 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5352recnd 11003 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℂ)
5411recnd 11003 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℂ)
5553, 54, 16divrec2d 11755 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
5638, 49, 553eqtr4rd 2789 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))))
577, 45nvscl 28988 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
586, 57mp3an1 1447 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
5958ancoms 459 . . . . . 6 ((𝐴𝑋 ∧ (1 / (𝐿𝐴)) ∈ ℂ) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
6039, 59syldan 591 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
617, 8nvcl 29023 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
626, 60, 61sylancr 587 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
637, 45, 12, 8nv1 29037 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
646, 63mp3an1 1447 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
65 eqle 11077 . . . . . 6 (((𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
6662, 64, 65syl2anc 584 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
676, 26, 313pm3.2i 1338 . . . . . 6 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊))
68 nmblolbi.6 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
697, 28, 8, 35, 68nmoolb 29133 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) ∧ (((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7067, 69mpan 687 . . . . 5 ((((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7160, 66, 70syl2anc 584 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7256, 71eqbrtrd 5096 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇))
737, 28, 68, 29nmblore 29148 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → (𝑁𝑇) ∈ ℝ)
746, 26, 27, 73mp3an 1460 . . . . 5 (𝑁𝑇) ∈ ℝ
7574a1i 11 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑁𝑇) ∈ ℝ)
76 ledivmul2 11854 . . . 4 (((𝑀‘(𝑇𝐴)) ∈ ℝ ∧ (𝑁𝑇) ∈ ℝ ∧ ((𝐿𝐴) ∈ ℝ ∧ 0 < (𝐿𝐴))) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7752, 75, 11, 20, 76syl112anc 1373 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7872, 77mpbid 231 . 2 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
79 0le0 12074 . . . 4 0 ≤ 0
80 eqid 2738 . . . . . . . 8 (0vec𝑊) = (0vec𝑊)
817, 28, 12, 80, 41lno0 29118 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
826, 26, 43, 81mp3an 1460 . . . . . 6 (𝑇‘(0vec𝑈)) = (0vec𝑊)
8382fveq2i 6777 . . . . 5 (𝑀‘(𝑇‘(0vec𝑈))) = (𝑀‘(0vec𝑊))
8480, 35nvz0 29030 . . . . . 6 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
8526, 84ax-mp 5 . . . . 5 (𝑀‘(0vec𝑊)) = 0
8683, 85eqtri 2766 . . . 4 (𝑀‘(𝑇‘(0vec𝑈))) = 0
8712, 8nvz0 29030 . . . . . . 7 (𝑈 ∈ NrmCVec → (𝐿‘(0vec𝑈)) = 0)
886, 87ax-mp 5 . . . . . 6 (𝐿‘(0vec𝑈)) = 0
8988oveq2i 7286 . . . . 5 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = ((𝑁𝑇) · 0)
9074recni 10989 . . . . . 6 (𝑁𝑇) ∈ ℂ
9190mul01i 11165 . . . . 5 ((𝑁𝑇) · 0) = 0
9289, 91eqtri 2766 . . . 4 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = 0
9379, 86, 923brtr4i 5104 . . 3 (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))
9493a1i 11 . 2 (𝐴𝑋 → (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
955, 78, 94pm2.61ne 3030 1 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  NrmCVeccnv 28946  BaseSetcba 28948   ·𝑠OLD cns 28949  0veccn0v 28950  normCVcnmcv 28952   LnOp clno 29102   normOpOLD cnmoo 29103   BLnOp cblo 29104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-lno 29106  df-nmoo 29107  df-blo 29108
This theorem is referenced by:  nmblolbi  29162
  Copyright terms: Public domain W3C validator