MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmblolbii Structured version   Visualization version   GIF version

Theorem nmblolbii 30831
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmblolbi.1 𝑋 = (BaseSet‘𝑈)
nmblolbi.4 𝐿 = (normCV𝑈)
nmblolbi.5 𝑀 = (normCV𝑊)
nmblolbi.6 𝑁 = (𝑈 normOpOLD 𝑊)
nmblolbi.7 𝐵 = (𝑈 BLnOp 𝑊)
nmblolbi.u 𝑈 ∈ NrmCVec
nmblolbi.w 𝑊 ∈ NrmCVec
nmblolbii.b 𝑇𝐵
Assertion
Ref Expression
nmblolbii (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))

Proof of Theorem nmblolbii
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝐴 = (0vec𝑈) → (𝑇𝐴) = (𝑇‘(0vec𝑈)))
21fveq2d 6924 . . 3 (𝐴 = (0vec𝑈) → (𝑀‘(𝑇𝐴)) = (𝑀‘(𝑇‘(0vec𝑈))))
3 fveq2 6920 . . . 4 (𝐴 = (0vec𝑈) → (𝐿𝐴) = (𝐿‘(0vec𝑈)))
43oveq2d 7464 . . 3 (𝐴 = (0vec𝑈) → ((𝑁𝑇) · (𝐿𝐴)) = ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
52, 4breq12d 5179 . 2 (𝐴 = (0vec𝑈) → ((𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)) ↔ (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))))
6 nmblolbi.u . . . . . . . . 9 𝑈 ∈ NrmCVec
7 nmblolbi.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
8 nmblolbi.4 . . . . . . . . . 10 𝐿 = (normCV𝑈)
97, 8nvcl 30693 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐿𝐴) ∈ ℝ)
106, 9mpan 689 . . . . . . . 8 (𝐴𝑋 → (𝐿𝐴) ∈ ℝ)
1110adantr 480 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℝ)
12 eqid 2740 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
137, 12, 8nvz 30701 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
146, 13mpan 689 . . . . . . . . 9 (𝐴𝑋 → ((𝐿𝐴) = 0 ↔ 𝐴 = (0vec𝑈)))
1514necon3bid 2991 . . . . . . . 8 (𝐴𝑋 → ((𝐿𝐴) ≠ 0 ↔ 𝐴 ≠ (0vec𝑈)))
1615biimpar 477 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ≠ 0)
1711, 16rereccld 12121 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℝ)
187, 12, 8nvgt0 30706 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
196, 18mpan 689 . . . . . . . . 9 (𝐴𝑋 → (𝐴 ≠ (0vec𝑈) ↔ 0 < (𝐿𝐴)))
2019biimpa 476 . . . . . . . 8 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (𝐿𝐴))
2111, 20recgt0d 12229 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 < (1 / (𝐿𝐴)))
22 0re 11292 . . . . . . . 8 0 ∈ ℝ
23 ltle 11378 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / (𝐿𝐴)) ∈ ℝ) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2422, 17, 23sylancr 586 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (0 < (1 / (𝐿𝐴)) → 0 ≤ (1 / (𝐿𝐴))))
2521, 24mpd 15 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 0 ≤ (1 / (𝐿𝐴)))
26 nmblolbi.w . . . . . . . . 9 𝑊 ∈ NrmCVec
27 nmblolbii.b . . . . . . . . 9 𝑇𝐵
28 eqid 2740 . . . . . . . . . 10 (BaseSet‘𝑊) = (BaseSet‘𝑊)
29 nmblolbi.7 . . . . . . . . . 10 𝐵 = (𝑈 BLnOp 𝑊)
307, 28, 29blof 30817 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋⟶(BaseSet‘𝑊))
316, 26, 27, 30mp3an 1461 . . . . . . . 8 𝑇:𝑋⟶(BaseSet‘𝑊)
3231ffvelcdmi 7117 . . . . . . 7 (𝐴𝑋 → (𝑇𝐴) ∈ (BaseSet‘𝑊))
3332adantr 480 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
34 eqid 2740 . . . . . . . 8 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
35 nmblolbi.5 . . . . . . . 8 𝑀 = (normCV𝑊)
3628, 34, 35nvsge0 30696 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3726, 36mp3an1 1448 . . . . . 6 ((((1 / (𝐿𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐿𝐴))) ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3817, 25, 33, 37syl21anc 837 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
3917recnd 11318 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (1 / (𝐿𝐴)) ∈ ℂ)
40 simpl 482 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → 𝐴𝑋)
41 eqid 2740 . . . . . . . . . . 11 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
4241, 29bloln 30816 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
436, 26, 27, 42mp3an 1461 . . . . . . . . 9 𝑇 ∈ (𝑈 LnOp 𝑊)
446, 26, 433pm3.2i 1339 . . . . . . . 8 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊))
45 eqid 2740 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
467, 45, 34, 41lnomul 30792 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ ((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4744, 46mpan 689 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4839, 40, 47syl2anc 583 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = ((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴)))
4948fveq2d 6924 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) = (𝑀‘((1 / (𝐿𝐴))( ·𝑠OLD𝑊)(𝑇𝐴))))
5028, 35nvcl 30693 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5126, 32, 50sylancr 586 . . . . . . . 8 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5251adantr 480 . . . . . . 7 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℝ)
5352recnd 11318 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ∈ ℂ)
5411recnd 11318 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿𝐴) ∈ ℂ)
5553, 54, 16divrec2d 12074 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = ((1 / (𝐿𝐴)) · (𝑀‘(𝑇𝐴))))
5638, 49, 553eqtr4rd 2791 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) = (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))))
577, 45nvscl 30658 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
586, 57mp3an1 1448 . . . . . . 7 (((1 / (𝐿𝐴)) ∈ ℂ ∧ 𝐴𝑋) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
5958ancoms 458 . . . . . 6 ((𝐴𝑋 ∧ (1 / (𝐿𝐴)) ∈ ℂ) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
6039, 59syldan 590 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
617, 8nvcl 30693 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
626, 60, 61sylancr 586 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ)
637, 45, 12, 8nv1 30707 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
646, 63mp3an1 1448 . . . . . 6 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1)
65 eqle 11392 . . . . . 6 (((𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ∈ ℝ ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) = 1) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
6662, 64, 65syl2anc 583 . . . . 5 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)
676, 26, 313pm3.2i 1339 . . . . . 6 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊))
68 nmblolbi.6 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
697, 28, 8, 35, 68nmoolb 30803 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) ∧ (((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7067, 69mpan 689 . . . . 5 ((((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴) ∈ 𝑋 ∧ (𝐿‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴)) ≤ 1) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7160, 66, 70syl2anc 583 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇‘((1 / (𝐿𝐴))( ·𝑠OLD𝑈)𝐴))) ≤ (𝑁𝑇))
7256, 71eqbrtrd 5188 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → ((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇))
737, 28, 68, 29nmblore 30818 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → (𝑁𝑇) ∈ ℝ)
746, 26, 27, 73mp3an 1461 . . . . 5 (𝑁𝑇) ∈ ℝ
7574a1i 11 . . . 4 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑁𝑇) ∈ ℝ)
76 ledivmul2 12174 . . . 4 (((𝑀‘(𝑇𝐴)) ∈ ℝ ∧ (𝑁𝑇) ∈ ℝ ∧ ((𝐿𝐴) ∈ ℝ ∧ 0 < (𝐿𝐴))) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7752, 75, 11, 20, 76syl112anc 1374 . . 3 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (((𝑀‘(𝑇𝐴)) / (𝐿𝐴)) ≤ (𝑁𝑇) ↔ (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
7872, 77mpbid 232 . 2 ((𝐴𝑋𝐴 ≠ (0vec𝑈)) → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
79 0le0 12394 . . . 4 0 ≤ 0
80 eqid 2740 . . . . . . . 8 (0vec𝑊) = (0vec𝑊)
817, 28, 12, 80, 41lno0 30788 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
826, 26, 43, 81mp3an 1461 . . . . . 6 (𝑇‘(0vec𝑈)) = (0vec𝑊)
8382fveq2i 6923 . . . . 5 (𝑀‘(𝑇‘(0vec𝑈))) = (𝑀‘(0vec𝑊))
8480, 35nvz0 30700 . . . . . 6 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
8526, 84ax-mp 5 . . . . 5 (𝑀‘(0vec𝑊)) = 0
8683, 85eqtri 2768 . . . 4 (𝑀‘(𝑇‘(0vec𝑈))) = 0
8712, 8nvz0 30700 . . . . . . 7 (𝑈 ∈ NrmCVec → (𝐿‘(0vec𝑈)) = 0)
886, 87ax-mp 5 . . . . . 6 (𝐿‘(0vec𝑈)) = 0
8988oveq2i 7459 . . . . 5 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = ((𝑁𝑇) · 0)
9074recni 11304 . . . . . 6 (𝑁𝑇) ∈ ℂ
9190mul01i 11480 . . . . 5 ((𝑁𝑇) · 0) = 0
9289, 91eqtri 2768 . . . 4 ((𝑁𝑇) · (𝐿‘(0vec𝑈))) = 0
9379, 86, 923brtr4i 5196 . . 3 (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈)))
9493a1i 11 . 2 (𝐴𝑋 → (𝑀‘(𝑇‘(0vec𝑈))) ≤ ((𝑁𝑇) · (𝐿‘(0vec𝑈))))
955, 78, 94pm2.61ne 3033 1 (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  NrmCVeccnv 30616  BaseSetcba 30618   ·𝑠OLD cns 30619  0veccn0v 30620  normCVcnmcv 30622   LnOp clno 30772   normOpOLD cnmoo 30773   BLnOp cblo 30774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-grpo 30525  df-gid 30526  df-ginv 30527  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-lno 30776  df-nmoo 30777  df-blo 30778
This theorem is referenced by:  nmblolbi  30832
  Copyright terms: Public domain W3C validator