MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzennn Structured version   Visualization version   GIF version

Theorem fzennn 13933
Description: The cardinality of a finite set of sequential integers. (See om2uz0i 13912 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fzennn.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
Assertion
Ref Expression
fzennn (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))

Proof of Theorem fzennn
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . 3 (𝑛 = 0 → (1...𝑛) = (1...0))
2 fveq2 6858 . . 3 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
31, 2breq12d 5120 . 2 (𝑛 = 0 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...0) ≈ (𝐺‘0)))
4 oveq2 7395 . . 3 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
5 fveq2 6858 . . 3 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
64, 5breq12d 5120 . 2 (𝑛 = 𝑚 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑚) ≈ (𝐺𝑚)))
7 oveq2 7395 . . 3 (𝑛 = (𝑚 + 1) → (1...𝑛) = (1...(𝑚 + 1)))
8 fveq2 6858 . . 3 (𝑛 = (𝑚 + 1) → (𝐺𝑛) = (𝐺‘(𝑚 + 1)))
97, 8breq12d 5120 . 2 (𝑛 = (𝑚 + 1) → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
10 oveq2 7395 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
11 fveq2 6858 . . 3 (𝑛 = 𝑁 → (𝐺𝑛) = (𝐺𝑁))
1210, 11breq12d 5120 . 2 (𝑛 = 𝑁 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑁) ≈ (𝐺𝑁)))
13 0ex 5262 . . . 4 ∅ ∈ V
1413enref 8956 . . 3 ∅ ≈ ∅
15 fz10 13506 . . 3 (1...0) = ∅
16 0z 12540 . . . . . 6 0 ∈ ℤ
17 fzennn.1 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
1816, 17om2uzf1oi 13918 . . . . 5 𝐺:ω–1-1-onto→(ℤ‘0)
19 peano1 7865 . . . . 5 ∅ ∈ ω
2018, 19pm3.2i 470 . . . 4 (𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω)
2116, 17om2uz0i 13912 . . . 4 (𝐺‘∅) = 0
22 f1ocnvfv 7253 . . . 4 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
2320, 21, 22mp2 9 . . 3 (𝐺‘0) = ∅
2414, 15, 233brtr4i 5137 . 2 (1...0) ≈ (𝐺‘0)
25 simpr 484 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...𝑚) ≈ (𝐺𝑚))
26 ovex 7420 . . . . . . 7 (𝑚 + 1) ∈ V
27 fvex 6871 . . . . . . 7 (𝐺𝑚) ∈ V
28 en2sn 9012 . . . . . . 7 (((𝑚 + 1) ∈ V ∧ (𝐺𝑚) ∈ V) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
2926, 27, 28mp2an 692 . . . . . 6 {(𝑚 + 1)} ≈ {(𝐺𝑚)}
3029a1i 11 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
31 fzp1disj 13544 . . . . . 6 ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅
3231a1i 11 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅)
33 f1ocnvdm 7260 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺𝑚) ∈ ω)
3418, 33mpan 690 . . . . . . . . 9 (𝑚 ∈ (ℤ‘0) → (𝐺𝑚) ∈ ω)
35 nn0uz 12835 . . . . . . . . 9 0 = (ℤ‘0)
3634, 35eleq2s 2846 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺𝑚) ∈ ω)
37 nnord 7850 . . . . . . . 8 ((𝐺𝑚) ∈ ω → Ord (𝐺𝑚))
38 ordirr 6350 . . . . . . . 8 (Ord (𝐺𝑚) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
3936, 37, 383syl 18 . . . . . . 7 (𝑚 ∈ ℕ0 → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
4039adantr 480 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
41 disjsn 4675 . . . . . 6 (((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅ ↔ ¬ (𝐺𝑚) ∈ (𝐺𝑚))
4240, 41sylibr 234 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)
43 unen 9017 . . . . 5 ((((1...𝑚) ≈ (𝐺𝑚) ∧ {(𝑚 + 1)} ≈ {(𝐺𝑚)}) ∧ (((1...𝑚) ∩ {(𝑚 + 1)}) = ∅ ∧ ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
4425, 30, 32, 42, 43syl22anc 838 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
45 1z 12563 . . . . . 6 1 ∈ ℤ
46 1m1e0 12258 . . . . . . . . . 10 (1 − 1) = 0
4746fveq2i 6861 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
4835, 47eqtr4i 2755 . . . . . . . 8 0 = (ℤ‘(1 − 1))
4948eleq2i 2820 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
5049biimpi 216 . . . . . 6 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
51 fzsuc2 13543 . . . . . 6 ((1 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(1 − 1))) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
5245, 50, 51sylancr 587 . . . . 5 (𝑚 ∈ ℕ0 → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
5352adantr 480 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
54 peano2 7866 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → suc (𝐺𝑚) ∈ ω)
5536, 54syl 17 . . . . . . . 8 (𝑚 ∈ ℕ0 → suc (𝐺𝑚) ∈ ω)
5655, 18jctil 519 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω))
5716, 17om2uzsuci 13913 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
5836, 57syl 17 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
5935eleq2i 2820 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
6059biimpi 216 . . . . . . . . . 10 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
61 f1ocnvfv2 7252 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺‘(𝐺𝑚)) = 𝑚)
6218, 60, 61sylancr 587 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝐺‘(𝐺𝑚)) = 𝑚)
6362oveq1d 7402 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝐺‘(𝐺𝑚)) + 1) = (𝑚 + 1))
6458, 63eqtrd 2764 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = (𝑚 + 1))
65 f1ocnvfv 7253 . . . . . . 7 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω) → ((𝐺‘suc (𝐺𝑚)) = (𝑚 + 1) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚)))
6656, 64, 65sylc 65 . . . . . 6 (𝑚 ∈ ℕ0 → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
6766adantr 480 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
68 df-suc 6338 . . . . 5 suc (𝐺𝑚) = ((𝐺𝑚) ∪ {(𝐺𝑚)})
6967, 68eqtrdi 2780 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = ((𝐺𝑚) ∪ {(𝐺𝑚)}))
7044, 53, 693brtr4d 5139 . . 3 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1)))
7170ex 412 . 2 (𝑚 ∈ ℕ0 → ((1...𝑚) ≈ (𝐺𝑚) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
723, 6, 9, 12, 24, 71nn0ind 12629 1 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  cin 3913  c0 4296  {csn 4589   class class class wbr 5107  cmpt 5188  ccnv 5637  cres 5640  Ord word 6331  suc csuc 6334  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  ωcom 7842  reccrdg 8377  cen 8915  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  fzen2  13934  cardfz  13935
  Copyright terms: Public domain W3C validator