MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzennn Structured version   Visualization version   GIF version

Theorem fzennn 13688
Description: The cardinality of a finite set of sequential integers. (See om2uz0i 13667 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fzennn.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
Assertion
Ref Expression
fzennn (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))

Proof of Theorem fzennn
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . 3 (𝑛 = 0 → (1...𝑛) = (1...0))
2 fveq2 6774 . . 3 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
31, 2breq12d 5087 . 2 (𝑛 = 0 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...0) ≈ (𝐺‘0)))
4 oveq2 7283 . . 3 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
5 fveq2 6774 . . 3 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
64, 5breq12d 5087 . 2 (𝑛 = 𝑚 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑚) ≈ (𝐺𝑚)))
7 oveq2 7283 . . 3 (𝑛 = (𝑚 + 1) → (1...𝑛) = (1...(𝑚 + 1)))
8 fveq2 6774 . . 3 (𝑛 = (𝑚 + 1) → (𝐺𝑛) = (𝐺‘(𝑚 + 1)))
97, 8breq12d 5087 . 2 (𝑛 = (𝑚 + 1) → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
10 oveq2 7283 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
11 fveq2 6774 . . 3 (𝑛 = 𝑁 → (𝐺𝑛) = (𝐺𝑁))
1210, 11breq12d 5087 . 2 (𝑛 = 𝑁 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑁) ≈ (𝐺𝑁)))
13 0ex 5231 . . . 4 ∅ ∈ V
1413enref 8773 . . 3 ∅ ≈ ∅
15 fz10 13277 . . 3 (1...0) = ∅
16 0z 12330 . . . . . 6 0 ∈ ℤ
17 fzennn.1 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
1816, 17om2uzf1oi 13673 . . . . 5 𝐺:ω–1-1-onto→(ℤ‘0)
19 peano1 7735 . . . . 5 ∅ ∈ ω
2018, 19pm3.2i 471 . . . 4 (𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω)
2116, 17om2uz0i 13667 . . . 4 (𝐺‘∅) = 0
22 f1ocnvfv 7150 . . . 4 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
2320, 21, 22mp2 9 . . 3 (𝐺‘0) = ∅
2414, 15, 233brtr4i 5104 . 2 (1...0) ≈ (𝐺‘0)
25 simpr 485 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...𝑚) ≈ (𝐺𝑚))
26 ovex 7308 . . . . . . 7 (𝑚 + 1) ∈ V
27 fvex 6787 . . . . . . 7 (𝐺𝑚) ∈ V
28 en2sn 8831 . . . . . . 7 (((𝑚 + 1) ∈ V ∧ (𝐺𝑚) ∈ V) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
2926, 27, 28mp2an 689 . . . . . 6 {(𝑚 + 1)} ≈ {(𝐺𝑚)}
3029a1i 11 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
31 fzp1disj 13315 . . . . . 6 ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅
3231a1i 11 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅)
33 f1ocnvdm 7157 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺𝑚) ∈ ω)
3418, 33mpan 687 . . . . . . . . 9 (𝑚 ∈ (ℤ‘0) → (𝐺𝑚) ∈ ω)
35 nn0uz 12620 . . . . . . . . 9 0 = (ℤ‘0)
3634, 35eleq2s 2857 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺𝑚) ∈ ω)
37 nnord 7720 . . . . . . . 8 ((𝐺𝑚) ∈ ω → Ord (𝐺𝑚))
38 ordirr 6284 . . . . . . . 8 (Ord (𝐺𝑚) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
3936, 37, 383syl 18 . . . . . . 7 (𝑚 ∈ ℕ0 → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
4039adantr 481 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
41 disjsn 4647 . . . . . 6 (((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅ ↔ ¬ (𝐺𝑚) ∈ (𝐺𝑚))
4240, 41sylibr 233 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)
43 unen 8836 . . . . 5 ((((1...𝑚) ≈ (𝐺𝑚) ∧ {(𝑚 + 1)} ≈ {(𝐺𝑚)}) ∧ (((1...𝑚) ∩ {(𝑚 + 1)}) = ∅ ∧ ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
4425, 30, 32, 42, 43syl22anc 836 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
45 1z 12350 . . . . . 6 1 ∈ ℤ
46 1m1e0 12045 . . . . . . . . . 10 (1 − 1) = 0
4746fveq2i 6777 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
4835, 47eqtr4i 2769 . . . . . . . 8 0 = (ℤ‘(1 − 1))
4948eleq2i 2830 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
5049biimpi 215 . . . . . 6 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
51 fzsuc2 13314 . . . . . 6 ((1 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(1 − 1))) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
5245, 50, 51sylancr 587 . . . . 5 (𝑚 ∈ ℕ0 → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
5352adantr 481 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
54 peano2 7737 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → suc (𝐺𝑚) ∈ ω)
5536, 54syl 17 . . . . . . . 8 (𝑚 ∈ ℕ0 → suc (𝐺𝑚) ∈ ω)
5655, 18jctil 520 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω))
5716, 17om2uzsuci 13668 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
5836, 57syl 17 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
5935eleq2i 2830 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
6059biimpi 215 . . . . . . . . . 10 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
61 f1ocnvfv2 7149 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺‘(𝐺𝑚)) = 𝑚)
6218, 60, 61sylancr 587 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝐺‘(𝐺𝑚)) = 𝑚)
6362oveq1d 7290 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝐺‘(𝐺𝑚)) + 1) = (𝑚 + 1))
6458, 63eqtrd 2778 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = (𝑚 + 1))
65 f1ocnvfv 7150 . . . . . . 7 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω) → ((𝐺‘suc (𝐺𝑚)) = (𝑚 + 1) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚)))
6656, 64, 65sylc 65 . . . . . 6 (𝑚 ∈ ℕ0 → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
6766adantr 481 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
68 df-suc 6272 . . . . 5 suc (𝐺𝑚) = ((𝐺𝑚) ∪ {(𝐺𝑚)})
6967, 68eqtrdi 2794 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = ((𝐺𝑚) ∪ {(𝐺𝑚)}))
7044, 53, 693brtr4d 5106 . . 3 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1)))
7170ex 413 . 2 (𝑚 ∈ ℕ0 → ((1...𝑚) ≈ (𝐺𝑚) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
723, 6, 9, 12, 24, 71nn0ind 12415 1 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  cin 3886  c0 4256  {csn 4561   class class class wbr 5074  cmpt 5157  ccnv 5588  cres 5591  Ord word 6265  suc csuc 6268  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  reccrdg 8240  cen 8730  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  fzen2  13689  cardfz  13690
  Copyright terms: Public domain W3C validator