MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzennn Structured version   Visualization version   GIF version

Theorem fzennn 13873
Description: The cardinality of a finite set of sequential integers. (See om2uz0i 13852 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fzennn.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
Assertion
Ref Expression
fzennn (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))

Proof of Theorem fzennn
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7365 . . 3 (𝑛 = 0 → (1...𝑛) = (1...0))
2 fveq2 6842 . . 3 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
31, 2breq12d 5118 . 2 (𝑛 = 0 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...0) ≈ (𝐺‘0)))
4 oveq2 7365 . . 3 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
5 fveq2 6842 . . 3 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
64, 5breq12d 5118 . 2 (𝑛 = 𝑚 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑚) ≈ (𝐺𝑚)))
7 oveq2 7365 . . 3 (𝑛 = (𝑚 + 1) → (1...𝑛) = (1...(𝑚 + 1)))
8 fveq2 6842 . . 3 (𝑛 = (𝑚 + 1) → (𝐺𝑛) = (𝐺‘(𝑚 + 1)))
97, 8breq12d 5118 . 2 (𝑛 = (𝑚 + 1) → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
10 oveq2 7365 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
11 fveq2 6842 . . 3 (𝑛 = 𝑁 → (𝐺𝑛) = (𝐺𝑁))
1210, 11breq12d 5118 . 2 (𝑛 = 𝑁 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑁) ≈ (𝐺𝑁)))
13 0ex 5264 . . . 4 ∅ ∈ V
1413enref 8925 . . 3 ∅ ≈ ∅
15 fz10 13462 . . 3 (1...0) = ∅
16 0z 12510 . . . . . 6 0 ∈ ℤ
17 fzennn.1 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
1816, 17om2uzf1oi 13858 . . . . 5 𝐺:ω–1-1-onto→(ℤ‘0)
19 peano1 7825 . . . . 5 ∅ ∈ ω
2018, 19pm3.2i 471 . . . 4 (𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω)
2116, 17om2uz0i 13852 . . . 4 (𝐺‘∅) = 0
22 f1ocnvfv 7224 . . . 4 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
2320, 21, 22mp2 9 . . 3 (𝐺‘0) = ∅
2414, 15, 233brtr4i 5135 . 2 (1...0) ≈ (𝐺‘0)
25 simpr 485 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...𝑚) ≈ (𝐺𝑚))
26 ovex 7390 . . . . . . 7 (𝑚 + 1) ∈ V
27 fvex 6855 . . . . . . 7 (𝐺𝑚) ∈ V
28 en2sn 8985 . . . . . . 7 (((𝑚 + 1) ∈ V ∧ (𝐺𝑚) ∈ V) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
2926, 27, 28mp2an 690 . . . . . 6 {(𝑚 + 1)} ≈ {(𝐺𝑚)}
3029a1i 11 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
31 fzp1disj 13500 . . . . . 6 ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅
3231a1i 11 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅)
33 f1ocnvdm 7231 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺𝑚) ∈ ω)
3418, 33mpan 688 . . . . . . . . 9 (𝑚 ∈ (ℤ‘0) → (𝐺𝑚) ∈ ω)
35 nn0uz 12805 . . . . . . . . 9 0 = (ℤ‘0)
3634, 35eleq2s 2856 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺𝑚) ∈ ω)
37 nnord 7810 . . . . . . . 8 ((𝐺𝑚) ∈ ω → Ord (𝐺𝑚))
38 ordirr 6335 . . . . . . . 8 (Ord (𝐺𝑚) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
3936, 37, 383syl 18 . . . . . . 7 (𝑚 ∈ ℕ0 → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
4039adantr 481 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
41 disjsn 4672 . . . . . 6 (((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅ ↔ ¬ (𝐺𝑚) ∈ (𝐺𝑚))
4240, 41sylibr 233 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)
43 unen 8990 . . . . 5 ((((1...𝑚) ≈ (𝐺𝑚) ∧ {(𝑚 + 1)} ≈ {(𝐺𝑚)}) ∧ (((1...𝑚) ∩ {(𝑚 + 1)}) = ∅ ∧ ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
4425, 30, 32, 42, 43syl22anc 837 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
45 1z 12533 . . . . . 6 1 ∈ ℤ
46 1m1e0 12225 . . . . . . . . . 10 (1 − 1) = 0
4746fveq2i 6845 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
4835, 47eqtr4i 2767 . . . . . . . 8 0 = (ℤ‘(1 − 1))
4948eleq2i 2829 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
5049biimpi 215 . . . . . 6 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
51 fzsuc2 13499 . . . . . 6 ((1 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(1 − 1))) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
5245, 50, 51sylancr 587 . . . . 5 (𝑚 ∈ ℕ0 → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
5352adantr 481 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
54 peano2 7827 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → suc (𝐺𝑚) ∈ ω)
5536, 54syl 17 . . . . . . . 8 (𝑚 ∈ ℕ0 → suc (𝐺𝑚) ∈ ω)
5655, 18jctil 520 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω))
5716, 17om2uzsuci 13853 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
5836, 57syl 17 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
5935eleq2i 2829 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
6059biimpi 215 . . . . . . . . . 10 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
61 f1ocnvfv2 7223 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺‘(𝐺𝑚)) = 𝑚)
6218, 60, 61sylancr 587 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝐺‘(𝐺𝑚)) = 𝑚)
6362oveq1d 7372 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝐺‘(𝐺𝑚)) + 1) = (𝑚 + 1))
6458, 63eqtrd 2776 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = (𝑚 + 1))
65 f1ocnvfv 7224 . . . . . . 7 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω) → ((𝐺‘suc (𝐺𝑚)) = (𝑚 + 1) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚)))
6656, 64, 65sylc 65 . . . . . 6 (𝑚 ∈ ℕ0 → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
6766adantr 481 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
68 df-suc 6323 . . . . 5 suc (𝐺𝑚) = ((𝐺𝑚) ∪ {(𝐺𝑚)})
6967, 68eqtrdi 2792 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = ((𝐺𝑚) ∪ {(𝐺𝑚)}))
7044, 53, 693brtr4d 5137 . . 3 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1)))
7170ex 413 . 2 (𝑚 ∈ ℕ0 → ((1...𝑚) ≈ (𝐺𝑚) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
723, 6, 9, 12, 24, 71nn0ind 12598 1 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  cin 3909  c0 4282  {csn 4586   class class class wbr 5105  cmpt 5188  ccnv 5632  cres 5635  Ord word 6316  suc csuc 6319  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  ωcom 7802  reccrdg 8355  cen 8880  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  fzen2  13874  cardfz  13875
  Copyright terms: Public domain W3C validator