Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
breqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2748 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtri 5100 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 |
This theorem is referenced by: 3brtr4i 5105 ensn1 8816 ensn1OLD 8817 1sdom2 9030 dju1p1e2ALT 9939 infmap2 9983 0lt1sr 10860 0le2 12084 2pos 12085 3pos 12087 4pos 12089 5pos 12091 6pos 12092 7pos 12093 8pos 12094 9pos 12095 1lt2 12153 2lt3 12154 3lt4 12156 4lt5 12159 5lt6 12163 6lt7 12168 7lt8 12174 8lt9 12181 nn0le2xi 12296 numltc 12472 declti 12484 xlemul1a 13031 sqge0i 13914 faclbnd2 14014 cats1fv 14581 ege2le3 15808 cos2bnd 15906 3dvdsdec 16050 n2dvdsm1 16087 sumeven 16105 divalglem2 16113 pockthi 16617 dec2dvds 16773 prmlem1 16818 prmlem2 16830 1259prm 16846 2503prm 16850 4001prm 16855 2strstr1OLD 16947 vitalilem5 24785 dveflem 25152 tangtx 25671 sinq12ge0 25674 cxpge0 25847 asin1 26053 birthday 26113 lgamgulmlem4 26190 ppiub 26361 bposlem7 26447 lgsdir2lem2 26483 pthdlem2 28145 ex-fl 28820 ex-ind-dvds 28834 siilem2 29223 normlem6 29486 normlem7 29487 cm2mi 29997 pjnormi 30092 unierri 30475 dp2lt10 31167 dpgti 31189 pfx1s2 31222 cyc2fv2 31398 cyc3fv3 31415 hgt750lemd 32637 hgt750lem 32640 hgt750lem2 32641 hgt750leme 32647 logi 33709 cnndvlem1 34726 taupi 35503 poimirlem25 35811 poimirlem26 35812 poimirlem27 35813 poimirlem28 35814 ftc1anclem5 35863 fdc 35912 lcmineqlem23 40066 3lexlogpow2ineq2 40074 pellfundgt1 40712 jm2.27dlem2 40839 stoweidlem13 43561 sqwvfoura 43776 sqwvfourb 43777 fourierswlem 43778 41prothprm 45082 tgblthelfgott 45278 tgoldbachlt 45279 nnlog2ge0lt1 45923 1aryenefmnd 46003 ackval42 46053 tworepnotupword 46532 |
Copyright terms: Public domain | W3C validator |