![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
breqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2749 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtri 5191 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: 3brtr4i 5196 ensn1 9082 ensn1OLD 9083 1sdom2ALT 9304 dju1p1e2ALT 10244 infmap2 10286 0lt1sr 11164 0le2 12395 2pos 12396 3pos 12398 4pos 12400 5pos 12402 6pos 12403 7pos 12404 8pos 12405 9pos 12406 1lt2 12464 2lt3 12465 3lt4 12467 4lt5 12470 5lt6 12474 6lt7 12479 7lt8 12485 8lt9 12492 nn0le2xi 12607 numltc 12784 declti 12796 xlemul1a 13350 sqge0i 14237 faclbnd2 14340 cats1fv 14908 ege2le3 16138 cos2bnd 16236 3dvdsdec 16380 n2dvdsm1 16417 sumeven 16435 divalglem2 16443 pockthi 16954 dec2dvds 17110 prmlem1 17155 prmlem2 17167 1259prm 17183 2503prm 17187 4001prm 17192 2strstr1OLD 17284 vitalilem5 25666 dveflem 26037 tangtx 26565 sinq12ge0 26568 logi 26647 cxpge0 26743 asin1 26955 birthday 27015 lgamgulmlem4 27093 ppiub 27266 bposlem7 27352 lgsdir2lem2 27388 n0scut 28356 pthdlem2 29804 ex-fl 30479 ex-ind-dvds 30493 siilem2 30884 normlem6 31147 normlem7 31148 cm2mi 31658 pjnormi 31753 unierri 32136 dp2lt10 32848 dpgti 32870 pfx1s2 32905 cyc2fv2 33115 cyc3fv3 33132 hgt750lemd 34625 hgt750lem 34628 hgt750lem2 34629 hgt750leme 34635 cnndvlem1 36503 taupi 37289 poimirlem25 37605 poimirlem26 37606 poimirlem27 37607 poimirlem28 37608 ftc1anclem5 37657 fdc 37705 lcmineqlem23 42008 3lexlogpow2ineq2 42016 pellfundgt1 42839 jm2.27dlem2 42967 stoweidlem13 45934 sqwvfoura 46149 sqwvfourb 46150 fourierswlem 46151 tworepnotupword 46805 41prothprm 47493 tgblthelfgott 47689 tgoldbachlt 47690 nnlog2ge0lt1 48300 1aryenefmnd 48380 ackval42 48430 |
Copyright terms: Public domain | W3C validator |