Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
breqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2747 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtri 5095 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: 3brtr4i 5100 ensn1 8761 ensn1OLD 8762 1sdom2 8951 dju1p1e2ALT 9861 infmap2 9905 0lt1sr 10782 0le2 12005 2pos 12006 3pos 12008 4pos 12010 5pos 12012 6pos 12013 7pos 12014 8pos 12015 9pos 12016 1lt2 12074 2lt3 12075 3lt4 12077 4lt5 12080 5lt6 12084 6lt7 12089 7lt8 12095 8lt9 12102 nn0le2xi 12217 numltc 12392 declti 12404 xlemul1a 12951 sqge0i 13833 faclbnd2 13933 cats1fv 14500 ege2le3 15727 cos2bnd 15825 3dvdsdec 15969 n2dvdsm1 16006 sumeven 16024 divalglem2 16032 pockthi 16536 dec2dvds 16692 prmlem1 16737 prmlem2 16749 1259prm 16765 2503prm 16769 4001prm 16774 2strstr1OLD 16864 vitalilem5 24681 dveflem 25048 tangtx 25567 sinq12ge0 25570 cxpge0 25743 asin1 25949 birthday 26009 lgamgulmlem4 26086 ppiub 26257 bposlem7 26343 lgsdir2lem2 26379 pthdlem2 28037 ex-fl 28712 ex-ind-dvds 28726 siilem2 29115 normlem6 29378 normlem7 29379 cm2mi 29889 pjnormi 29984 unierri 30367 dp2lt10 31060 dpgti 31082 pfx1s2 31115 cyc2fv2 31291 cyc3fv3 31308 hgt750lemd 32528 hgt750lem 32531 hgt750lem2 32532 hgt750leme 32538 logi 33606 cnndvlem1 34644 taupi 35421 poimirlem25 35729 poimirlem26 35730 poimirlem27 35731 poimirlem28 35732 ftc1anclem5 35781 fdc 35830 lcmineqlem23 39987 3lexlogpow2ineq2 39995 pellfundgt1 40621 jm2.27dlem2 40748 stoweidlem13 43444 sqwvfoura 43659 sqwvfourb 43660 fourierswlem 43661 41prothprm 44959 tgblthelfgott 45155 tgoldbachlt 45156 nnlog2ge0lt1 45800 1aryenefmnd 45880 ackval42 45930 |
Copyright terms: Public domain | W3C validator |