| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 5127 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: 3brtr4i 5132 ensn1 8969 1sdom2ALT 9165 dju1p1e2ALT 10106 infmap2 10148 0lt1sr 11026 0le2 12266 2pos 12267 3pos 12269 4pos 12271 5pos 12273 6pos 12274 7pos 12275 8pos 12276 9pos 12277 1lt2 12330 2lt3 12331 3lt4 12333 4lt5 12336 5lt6 12340 6lt7 12345 7lt8 12351 8lt9 12358 numltc 12653 declti 12665 xlemul1a 13226 sqge0i 14131 faclbnd2 14234 cats1fv 14802 ege2le3 16033 cos2bnd 16133 3dvdsdec 16279 n2dvdsm1 16316 sumeven 16334 divalglem2 16342 pockthi 16855 dec2dvds 17011 prmlem1 17055 prmlem2 17067 1259prm 17083 2503prm 17087 4001prm 17092 vitalilem5 25547 dveflem 25917 tangtx 26448 sinq12ge0 26451 logi 26530 cxpge0 26626 asin1 26838 birthday 26898 lgamgulmlem4 26976 ppiub 27149 bposlem7 27235 lgsdir2lem2 27271 pthdlem2 29749 ex-fl 30427 ex-ind-dvds 30441 siilem2 30832 normlem6 31095 normlem7 31096 cm2mi 31606 pjnormi 31701 unierri 32084 dp2lt10 32855 dpgti 32877 pfx1s2 32911 cyc2fv2 33095 cyc3fv3 33112 hgt750lemd 34633 hgt750lem 34636 hgt750lem2 34637 hgt750leme 34643 cnndvlem1 36519 taupi 37305 poimirlem25 37633 poimirlem26 37634 poimirlem27 37635 poimirlem28 37636 ftc1anclem5 37685 fdc 37733 lcmineqlem23 42033 3lexlogpow2ineq2 42041 pellfundgt1 42865 jm2.27dlem2 42993 stoweidlem13 46005 sqwvfoura 46220 sqwvfourb 46221 fourierswlem 46222 tworepnotupword 46878 m1modnep2mod 47347 41prothprm 47614 tgblthelfgott 47810 tgoldbachlt 47811 nnlog2ge0lt1 48549 1aryenefmnd 48629 ackval42 48679 |
| Copyright terms: Public domain | W3C validator |