| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2739 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 5135 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: 3brtr4i 5140 ensn1 8995 1sdom2ALT 9195 dju1p1e2ALT 10135 infmap2 10177 0lt1sr 11055 0le2 12295 2pos 12296 3pos 12298 4pos 12300 5pos 12302 6pos 12303 7pos 12304 8pos 12305 9pos 12306 1lt2 12359 2lt3 12360 3lt4 12362 4lt5 12365 5lt6 12369 6lt7 12374 7lt8 12380 8lt9 12387 numltc 12682 declti 12694 xlemul1a 13255 sqge0i 14160 faclbnd2 14263 cats1fv 14832 ege2le3 16063 cos2bnd 16163 3dvdsdec 16309 n2dvdsm1 16346 sumeven 16364 divalglem2 16372 pockthi 16885 dec2dvds 17041 prmlem1 17085 prmlem2 17097 1259prm 17113 2503prm 17117 4001prm 17122 vitalilem5 25520 dveflem 25890 tangtx 26421 sinq12ge0 26424 logi 26503 cxpge0 26599 asin1 26811 birthday 26871 lgamgulmlem4 26949 ppiub 27122 bposlem7 27208 lgsdir2lem2 27244 pthdlem2 29705 ex-fl 30383 ex-ind-dvds 30397 siilem2 30788 normlem6 31051 normlem7 31052 cm2mi 31562 pjnormi 31657 unierri 32040 dp2lt10 32811 dpgti 32833 pfx1s2 32867 cyc2fv2 33086 cyc3fv3 33103 hgt750lemd 34646 hgt750lem 34649 hgt750lem2 34650 hgt750leme 34656 cnndvlem1 36532 taupi 37318 poimirlem25 37646 poimirlem26 37647 poimirlem27 37648 poimirlem28 37649 ftc1anclem5 37698 fdc 37746 lcmineqlem23 42046 3lexlogpow2ineq2 42054 pellfundgt1 42878 jm2.27dlem2 43006 stoweidlem13 46018 sqwvfoura 46233 sqwvfourb 46234 fourierswlem 46235 tworepnotupword 46891 m1modnep2mod 47357 41prothprm 47624 tgblthelfgott 47820 tgoldbachlt 47821 nnlog2ge0lt1 48559 1aryenefmnd 48639 ackval42 48689 |
| Copyright terms: Public domain | W3C validator |