![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
breqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2745 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtri 5114 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 class class class wbr 5089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 |
This theorem is referenced by: 3brtr4i 5119 ensn1 8874 ensn1OLD 8875 1sdom2ALT 9098 dju1p1e2ALT 10023 infmap2 10067 0lt1sr 10944 0le2 12168 2pos 12169 3pos 12171 4pos 12173 5pos 12175 6pos 12176 7pos 12177 8pos 12178 9pos 12179 1lt2 12237 2lt3 12238 3lt4 12240 4lt5 12243 5lt6 12247 6lt7 12252 7lt8 12258 8lt9 12265 nn0le2xi 12380 numltc 12556 declti 12568 xlemul1a 13115 sqge0i 13998 faclbnd2 14098 cats1fv 14663 ege2le3 15890 cos2bnd 15988 3dvdsdec 16132 n2dvdsm1 16169 sumeven 16187 divalglem2 16195 pockthi 16697 dec2dvds 16853 prmlem1 16898 prmlem2 16910 1259prm 16926 2503prm 16930 4001prm 16935 2strstr1OLD 17027 vitalilem5 24874 dveflem 25241 tangtx 25760 sinq12ge0 25763 cxpge0 25936 asin1 26142 birthday 26202 lgamgulmlem4 26279 ppiub 26450 bposlem7 26536 lgsdir2lem2 26572 pthdlem2 28365 ex-fl 29040 ex-ind-dvds 29054 siilem2 29443 normlem6 29706 normlem7 29707 cm2mi 30217 pjnormi 30312 unierri 30695 dp2lt10 31386 dpgti 31408 pfx1s2 31441 cyc2fv2 31617 cyc3fv3 31634 hgt750lemd 32869 hgt750lem 32872 hgt750lem2 32873 hgt750leme 32879 logi 33934 cnndvlem1 34808 taupi 35592 poimirlem25 35900 poimirlem26 35901 poimirlem27 35902 poimirlem28 35903 ftc1anclem5 35952 fdc 36001 lcmineqlem23 40306 3lexlogpow2ineq2 40314 pellfundgt1 40955 jm2.27dlem2 41083 stoweidlem13 43879 sqwvfoura 44094 sqwvfourb 44095 fourierswlem 44096 41prothprm 45411 tgblthelfgott 45607 tgoldbachlt 45608 nnlog2ge0lt1 46252 1aryenefmnd 46332 ackval42 46382 tworepnotupword 46861 |
Copyright terms: Public domain | W3C validator |