| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2744 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 5144 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 |
| This theorem is referenced by: 3brtr4i 5149 ensn1 9035 1sdom2ALT 9249 dju1p1e2ALT 10189 infmap2 10231 0lt1sr 11109 0le2 12342 2pos 12343 3pos 12345 4pos 12347 5pos 12349 6pos 12350 7pos 12351 8pos 12352 9pos 12353 1lt2 12411 2lt3 12412 3lt4 12414 4lt5 12417 5lt6 12421 6lt7 12426 7lt8 12432 8lt9 12439 numltc 12734 declti 12746 xlemul1a 13304 sqge0i 14206 faclbnd2 14309 cats1fv 14878 ege2le3 16106 cos2bnd 16206 3dvdsdec 16351 n2dvdsm1 16388 sumeven 16406 divalglem2 16414 pockthi 16927 dec2dvds 17083 prmlem1 17127 prmlem2 17139 1259prm 17155 2503prm 17159 4001prm 17164 vitalilem5 25565 dveflem 25935 tangtx 26466 sinq12ge0 26469 logi 26548 cxpge0 26644 asin1 26856 birthday 26916 lgamgulmlem4 26994 ppiub 27167 bposlem7 27253 lgsdir2lem2 27289 pthdlem2 29750 ex-fl 30428 ex-ind-dvds 30442 siilem2 30833 normlem6 31096 normlem7 31097 cm2mi 31607 pjnormi 31702 unierri 32085 dp2lt10 32858 dpgti 32880 pfx1s2 32914 cyc2fv2 33133 cyc3fv3 33150 hgt750lemd 34680 hgt750lem 34683 hgt750lem2 34684 hgt750leme 34690 cnndvlem1 36555 taupi 37341 poimirlem25 37669 poimirlem26 37670 poimirlem27 37671 poimirlem28 37672 ftc1anclem5 37721 fdc 37769 lcmineqlem23 42064 3lexlogpow2ineq2 42072 pellfundgt1 42906 jm2.27dlem2 43034 stoweidlem13 46042 sqwvfoura 46257 sqwvfourb 46258 fourierswlem 46259 tworepnotupword 46915 m1modnep2mod 47381 41prothprm 47633 tgblthelfgott 47829 tgoldbachlt 47830 nnlog2ge0lt1 48546 1aryenefmnd 48626 ackval42 48676 |
| Copyright terms: Public domain | W3C validator |