| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 5127 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: 3brtr4i 5132 ensn1 8969 1sdom2ALT 9165 dju1p1e2ALT 10104 infmap2 10146 0lt1sr 11024 0le2 12264 2pos 12265 3pos 12267 4pos 12269 5pos 12271 6pos 12272 7pos 12273 8pos 12274 9pos 12275 1lt2 12328 2lt3 12329 3lt4 12331 4lt5 12334 5lt6 12338 6lt7 12343 7lt8 12349 8lt9 12356 numltc 12651 declti 12663 xlemul1a 13224 sqge0i 14129 faclbnd2 14232 cats1fv 14801 ege2le3 16032 cos2bnd 16132 3dvdsdec 16278 n2dvdsm1 16315 sumeven 16333 divalglem2 16341 pockthi 16854 dec2dvds 17010 prmlem1 17054 prmlem2 17066 1259prm 17082 2503prm 17086 4001prm 17091 vitalilem5 25546 dveflem 25916 tangtx 26447 sinq12ge0 26450 logi 26529 cxpge0 26625 asin1 26837 birthday 26897 lgamgulmlem4 26975 ppiub 27148 bposlem7 27234 lgsdir2lem2 27270 pthdlem2 29748 ex-fl 30426 ex-ind-dvds 30440 siilem2 30831 normlem6 31094 normlem7 31095 cm2mi 31605 pjnormi 31700 unierri 32083 dp2lt10 32854 dpgti 32876 pfx1s2 32910 cyc2fv2 33094 cyc3fv3 33111 hgt750lemd 34632 hgt750lem 34635 hgt750lem2 34636 hgt750leme 34642 cnndvlem1 36518 taupi 37304 poimirlem25 37632 poimirlem26 37633 poimirlem27 37634 poimirlem28 37635 ftc1anclem5 37684 fdc 37732 lcmineqlem23 42032 3lexlogpow2ineq2 42040 pellfundgt1 42864 jm2.27dlem2 42992 stoweidlem13 46004 sqwvfoura 46219 sqwvfourb 46220 fourierswlem 46221 tworepnotupword 46877 m1modnep2mod 47346 41prothprm 47613 tgblthelfgott 47809 tgoldbachlt 47810 nnlog2ge0lt1 48548 1aryenefmnd 48628 ackval42 48678 |
| Copyright terms: Public domain | W3C validator |