![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
breqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2744 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtri 5173 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 |
This theorem is referenced by: 3brtr4i 5178 ensn1 9060 1sdom2ALT 9275 dju1p1e2ALT 10213 infmap2 10255 0lt1sr 11133 0le2 12366 2pos 12367 3pos 12369 4pos 12371 5pos 12373 6pos 12374 7pos 12375 8pos 12376 9pos 12377 1lt2 12435 2lt3 12436 3lt4 12438 4lt5 12441 5lt6 12445 6lt7 12450 7lt8 12456 8lt9 12463 numltc 12757 declti 12769 xlemul1a 13327 sqge0i 14224 faclbnd2 14327 cats1fv 14895 ege2le3 16123 cos2bnd 16221 3dvdsdec 16366 n2dvdsm1 16403 sumeven 16421 divalglem2 16429 pockthi 16941 dec2dvds 17097 prmlem1 17142 prmlem2 17154 1259prm 17170 2503prm 17174 4001prm 17179 2strstr1OLD 17271 vitalilem5 25661 dveflem 26032 tangtx 26562 sinq12ge0 26565 logi 26644 cxpge0 26740 asin1 26952 birthday 27012 lgamgulmlem4 27090 ppiub 27263 bposlem7 27349 lgsdir2lem2 27385 n0scut 28353 pthdlem2 29801 ex-fl 30476 ex-ind-dvds 30490 siilem2 30881 normlem6 31144 normlem7 31145 cm2mi 31655 pjnormi 31750 unierri 32133 dp2lt10 32851 dpgti 32873 pfx1s2 32908 cyc2fv2 33125 cyc3fv3 33142 hgt750lemd 34642 hgt750lem 34645 hgt750lem2 34646 hgt750leme 34652 cnndvlem1 36520 taupi 37306 poimirlem25 37632 poimirlem26 37633 poimirlem27 37634 poimirlem28 37635 ftc1anclem5 37684 fdc 37732 lcmineqlem23 42033 3lexlogpow2ineq2 42041 pellfundgt1 42871 jm2.27dlem2 42999 stoweidlem13 45969 sqwvfoura 46184 sqwvfourb 46185 fourierswlem 46186 tworepnotupword 46840 m1modnep2mod 47292 41prothprm 47544 tgblthelfgott 47740 tgoldbachlt 47741 nnlog2ge0lt1 48416 1aryenefmnd 48496 ackval42 48546 |
Copyright terms: Public domain | W3C validator |