| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 5117 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: 3brtr4i 5122 ensn1 8946 1sdom2ALT 9138 dju1p1e2ALT 10069 infmap2 10111 0lt1sr 10989 0le2 12230 2pos 12231 3pos 12233 4pos 12235 5pos 12237 6pos 12238 7pos 12239 8pos 12240 9pos 12241 1lt2 12294 2lt3 12295 3lt4 12297 4lt5 12300 5lt6 12304 6lt7 12309 7lt8 12315 8lt9 12322 numltc 12617 declti 12629 xlemul1a 13190 sqge0i 14095 faclbnd2 14198 cats1fv 14766 ege2le3 15997 cos2bnd 16097 3dvdsdec 16243 n2dvdsm1 16280 sumeven 16298 divalglem2 16306 pockthi 16819 dec2dvds 16975 prmlem1 17019 prmlem2 17031 1259prm 17047 2503prm 17051 4001prm 17056 vitalilem5 25511 dveflem 25881 tangtx 26412 sinq12ge0 26415 logi 26494 cxpge0 26590 asin1 26802 birthday 26862 lgamgulmlem4 26940 ppiub 27113 bposlem7 27199 lgsdir2lem2 27235 pthdlem2 29717 ex-fl 30395 ex-ind-dvds 30409 siilem2 30800 normlem6 31063 normlem7 31064 cm2mi 31574 pjnormi 31669 unierri 32052 dp2lt10 32833 dpgti 32855 pfx1s2 32889 cyc2fv2 33073 cyc3fv3 33090 hgt750lemd 34632 hgt750lem 34635 hgt750lem2 34636 hgt750leme 34642 cnndvlem1 36531 taupi 37317 poimirlem25 37645 poimirlem26 37646 poimirlem27 37647 poimirlem28 37648 ftc1anclem5 37697 fdc 37745 lcmineqlem23 42044 3lexlogpow2ineq2 42052 pellfundgt1 42876 jm2.27dlem2 43003 stoweidlem13 46014 sqwvfoura 46229 sqwvfourb 46230 fourierswlem 46231 tworepnotupword 46887 m1modnep2mod 47356 41prothprm 47623 tgblthelfgott 47819 tgoldbachlt 47820 nnlog2ge0lt1 48571 1aryenefmnd 48651 ackval42 48701 |
| Copyright terms: Public domain | W3C validator |