| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2740 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 5114 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: 3brtr4i 5119 ensn1 8943 1sdom2ALT 9133 dju1p1e2ALT 10066 infmap2 10108 0lt1sr 10986 0le2 12227 2pos 12228 3pos 12230 4pos 12232 5pos 12234 6pos 12235 7pos 12236 8pos 12237 9pos 12238 1lt2 12291 2lt3 12292 3lt4 12294 4lt5 12297 5lt6 12301 6lt7 12306 7lt8 12312 8lt9 12319 numltc 12614 declti 12626 xlemul1a 13187 sqge0i 14095 faclbnd2 14198 cats1fv 14766 ege2le3 15997 cos2bnd 16097 3dvdsdec 16243 n2dvdsm1 16280 sumeven 16298 divalglem2 16306 pockthi 16819 dec2dvds 16975 prmlem1 17019 prmlem2 17031 1259prm 17047 2503prm 17051 4001prm 17056 vitalilem5 25540 dveflem 25910 tangtx 26441 sinq12ge0 26444 logi 26523 cxpge0 26619 asin1 26831 birthday 26891 lgamgulmlem4 26969 ppiub 27142 bposlem7 27228 lgsdir2lem2 27264 pthdlem2 29746 ex-fl 30427 ex-ind-dvds 30441 siilem2 30832 normlem6 31095 normlem7 31096 cm2mi 31606 pjnormi 31701 unierri 32084 dp2lt10 32864 dpgti 32886 pfx1s2 32920 cyc2fv2 33091 cyc3fv3 33108 hgt750lemd 34661 hgt750lem 34664 hgt750lem2 34665 hgt750leme 34671 cnndvlem1 36581 taupi 37367 poimirlem25 37684 poimirlem26 37685 poimirlem27 37686 poimirlem28 37687 ftc1anclem5 37736 fdc 37784 lcmineqlem23 42143 3lexlogpow2ineq2 42151 pellfundgt1 42975 jm2.27dlem2 43102 stoweidlem13 46110 sqwvfoura 46325 sqwvfourb 46326 fourierswlem 46327 m1modnep2mod 47451 41prothprm 47718 tgblthelfgott 47914 tgoldbachlt 47915 nnlog2ge0lt1 48666 1aryenefmnd 48746 ackval42 48796 |
| Copyright terms: Public domain | W3C validator |