| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 5132 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: 3brtr4i 5137 ensn1 8992 1sdom2ALT 9188 dju1p1e2ALT 10128 infmap2 10170 0lt1sr 11048 0le2 12288 2pos 12289 3pos 12291 4pos 12293 5pos 12295 6pos 12296 7pos 12297 8pos 12298 9pos 12299 1lt2 12352 2lt3 12353 3lt4 12355 4lt5 12358 5lt6 12362 6lt7 12367 7lt8 12373 8lt9 12380 numltc 12675 declti 12687 xlemul1a 13248 sqge0i 14153 faclbnd2 14256 cats1fv 14825 ege2le3 16056 cos2bnd 16156 3dvdsdec 16302 n2dvdsm1 16339 sumeven 16357 divalglem2 16365 pockthi 16878 dec2dvds 17034 prmlem1 17078 prmlem2 17090 1259prm 17106 2503prm 17110 4001prm 17115 vitalilem5 25513 dveflem 25883 tangtx 26414 sinq12ge0 26417 logi 26496 cxpge0 26592 asin1 26804 birthday 26864 lgamgulmlem4 26942 ppiub 27115 bposlem7 27201 lgsdir2lem2 27237 pthdlem2 29698 ex-fl 30376 ex-ind-dvds 30390 siilem2 30781 normlem6 31044 normlem7 31045 cm2mi 31555 pjnormi 31650 unierri 32033 dp2lt10 32804 dpgti 32826 pfx1s2 32860 cyc2fv2 33079 cyc3fv3 33096 hgt750lemd 34639 hgt750lem 34642 hgt750lem2 34643 hgt750leme 34649 cnndvlem1 36525 taupi 37311 poimirlem25 37639 poimirlem26 37640 poimirlem27 37641 poimirlem28 37642 ftc1anclem5 37691 fdc 37739 lcmineqlem23 42039 3lexlogpow2ineq2 42047 pellfundgt1 42871 jm2.27dlem2 42999 stoweidlem13 46011 sqwvfoura 46226 sqwvfourb 46227 fourierswlem 46228 tworepnotupword 46884 m1modnep2mod 47353 41prothprm 47620 tgblthelfgott 47816 tgoldbachlt 47817 nnlog2ge0lt1 48555 1aryenefmnd 48635 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |