![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decle | Structured version Visualization version GIF version |
Description: Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
decle.1 | โข ๐ด โ โ0 |
decle.2 | โข ๐ต โ โ0 |
decle.3 | โข ๐ถ โ โ0 |
decle.4 | โข ๐ต โค ๐ถ |
Ref | Expression |
---|---|
decle | โข ;๐ด๐ต โค ;๐ด๐ถ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decle.4 | . . 3 โข ๐ต โค ๐ถ | |
2 | decle.2 | . . . . 5 โข ๐ต โ โ0 | |
3 | 2 | nn0rei 12482 | . . . 4 โข ๐ต โ โ |
4 | decle.3 | . . . . 5 โข ๐ถ โ โ0 | |
5 | 4 | nn0rei 12482 | . . . 4 โข ๐ถ โ โ |
6 | 10nn0 12694 | . . . . . 6 โข ;10 โ โ0 | |
7 | decle.1 | . . . . . 6 โข ๐ด โ โ0 | |
8 | 6, 7 | nn0mulcli 12509 | . . . . 5 โข (;10 ยท ๐ด) โ โ0 |
9 | 8 | nn0rei 12482 | . . . 4 โข (;10 ยท ๐ด) โ โ |
10 | 3, 5, 9 | leadd2i 11769 | . . 3 โข (๐ต โค ๐ถ โ ((;10 ยท ๐ด) + ๐ต) โค ((;10 ยท ๐ด) + ๐ถ)) |
11 | 1, 10 | mpbi 229 | . 2 โข ((;10 ยท ๐ด) + ๐ต) โค ((;10 ยท ๐ด) + ๐ถ) |
12 | dfdec10 12679 | . 2 โข ;๐ด๐ต = ((;10 ยท ๐ด) + ๐ต) | |
13 | dfdec10 12679 | . 2 โข ;๐ด๐ถ = ((;10 ยท ๐ด) + ๐ถ) | |
14 | 11, 12, 13 | 3brtr4i 5169 | 1 โข ;๐ด๐ต โค ;๐ด๐ถ |
Colors of variables: wff setvar class |
Syntax hints: โ wcel 2098 class class class wbr 5139 (class class class)co 7402 0cc0 11107 1c1 11108 + caddc 11110 ยท cmul 11112 โค cle 11248 โ0cn0 12471 ;cdc 12676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-dec 12677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |