Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fthres2 | Structured version Visualization version GIF version |
Description: A faithful functor into a restricted category is also a faithful functor into the whole category. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
fthres2 | ⊢ (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Faith (𝐷 ↾cat 𝑅)) ⊆ (𝐶 Faith 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfth 17277 | . . 3 ⊢ Rel (𝐶 Faith (𝐷 ↾cat 𝑅)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ (Subcat‘𝐷) → Rel (𝐶 Faith (𝐷 ↾cat 𝑅))) |
3 | funcres2 17266 | . . . . . 6 ⊢ (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Func (𝐷 ↾cat 𝑅)) ⊆ (𝐶 Func 𝐷)) | |
4 | 3 | ssbrd 5070 | . . . . 5 ⊢ (𝑅 ∈ (Subcat‘𝐷) → (𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔 → 𝑓(𝐶 Func 𝐷)𝑔)) |
5 | 4 | anim1d 614 | . . . 4 ⊢ (𝑅 ∈ (Subcat‘𝐷) → ((𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥𝑔𝑦)) → (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥𝑔𝑦)))) |
6 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
7 | 6 | isfth 17282 | . . . 4 ⊢ (𝑓(𝐶 Faith (𝐷 ↾cat 𝑅))𝑔 ↔ (𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥𝑔𝑦))) |
8 | 6 | isfth 17282 | . . . 4 ⊢ (𝑓(𝐶 Faith 𝐷)𝑔 ↔ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun ◡(𝑥𝑔𝑦))) |
9 | 5, 7, 8 | 3imtr4g 299 | . . 3 ⊢ (𝑅 ∈ (Subcat‘𝐷) → (𝑓(𝐶 Faith (𝐷 ↾cat 𝑅))𝑔 → 𝑓(𝐶 Faith 𝐷)𝑔)) |
10 | df-br 5028 | . . 3 ⊢ (𝑓(𝐶 Faith (𝐷 ↾cat 𝑅))𝑔 ↔ 〈𝑓, 𝑔〉 ∈ (𝐶 Faith (𝐷 ↾cat 𝑅))) | |
11 | df-br 5028 | . . 3 ⊢ (𝑓(𝐶 Faith 𝐷)𝑔 ↔ 〈𝑓, 𝑔〉 ∈ (𝐶 Faith 𝐷)) | |
12 | 9, 10, 11 | 3imtr3g 298 | . 2 ⊢ (𝑅 ∈ (Subcat‘𝐷) → (〈𝑓, 𝑔〉 ∈ (𝐶 Faith (𝐷 ↾cat 𝑅)) → 〈𝑓, 𝑔〉 ∈ (𝐶 Faith 𝐷))) |
13 | 2, 12 | relssdv 5626 | 1 ⊢ (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Faith (𝐷 ↾cat 𝑅)) ⊆ (𝐶 Faith 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2113 ∀wral 3053 ⊆ wss 3841 〈cop 4519 class class class wbr 5027 ◡ccnv 5518 Rel wrel 5524 Fun wfun 6327 ‘cfv 6333 (class class class)co 7164 Basecbs 16579 ↾cat cresc 17176 Subcatcsubc 17177 Func cfunc 17222 Faith cfth 17271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-map 8432 df-pm 8433 df-ixp 8501 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-dec 12173 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-hom 16685 df-cco 16686 df-cat 17035 df-cid 17036 df-homf 17037 df-ssc 17178 df-resc 17179 df-subc 17180 df-func 17226 df-fth 17273 |
This theorem is referenced by: rescfth 17305 |
Copyright terms: Public domain | W3C validator |