Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege110 | Structured version Visualization version GIF version |
Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege110.x | ⊢ 𝑋 ∈ 𝐴 |
frege110.y | ⊢ 𝑌 ∈ 𝐵 |
frege110.m | ⊢ 𝑀 ∈ 𝐶 |
frege110.r | ⊢ 𝑅 ∈ 𝐷 |
Ref | Expression |
---|---|
frege110 | ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege110.x | . . 3 ⊢ 𝑋 ∈ 𝐴 | |
2 | frege110.r | . . 3 ⊢ 𝑅 ∈ 𝐷 | |
3 | 1, 2 | frege109 41819 | . 2 ⊢ 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) |
4 | frege110.y | . . . 4 ⊢ 𝑌 ∈ 𝐵 | |
5 | frege110.m | . . . 4 ⊢ 𝑀 ∈ 𝐶 | |
6 | imaundir 6076 | . . . . 5 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) | |
7 | fvex 6824 | . . . . . . 7 ⊢ (t+‘𝑅) ∈ V | |
8 | imaexg 7808 | . . . . . . 7 ⊢ ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ ((t+‘𝑅) “ {𝑋}) ∈ V |
10 | imai 5999 | . . . . . . 7 ⊢ ( I “ {𝑋}) = {𝑋} | |
11 | snex 5368 | . . . . . . 7 ⊢ {𝑋} ∈ V | |
12 | 10, 11 | eqeltri 2833 | . . . . . 6 ⊢ ( I “ {𝑋}) ∈ V |
13 | 9, 12 | unex 7637 | . . . . 5 ⊢ (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V |
14 | 6, 13 | eqeltri 2833 | . . . 4 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V |
15 | 4, 5, 2, 14 | frege78 41788 | . . 3 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})))) |
16 | 1 | elexi 3459 | . . . . . . 7 ⊢ 𝑋 ∈ V |
17 | vex 3444 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
18 | 16, 17 | elimasn 6014 | . . . . . 6 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 〈𝑋, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) |
19 | df-br 5087 | . . . . . 6 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ 〈𝑋, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) | |
20 | 18, 19 | bitr4i 277 | . . . . 5 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎) |
21 | 20 | imbi2i 335 | . . . 4 ⊢ ((𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
22 | 21 | albii 1820 | . . 3 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
23 | 5 | elexi 3459 | . . . . . 6 ⊢ 𝑀 ∈ V |
24 | 16, 23 | elimasn 6014 | . . . . 5 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 〈𝑋, 𝑀〉 ∈ ((t+‘𝑅) ∪ I )) |
25 | df-br 5087 | . . . . 5 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ 〈𝑋, 𝑀〉 ∈ ((t+‘𝑅) ∪ I )) | |
26 | 24, 25 | bitr4i 277 | . . . 4 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀) |
27 | 26 | imbi2i 335 | . . 3 ⊢ ((𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
28 | 15, 22, 27 | 3imtr3g 294 | . 2 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))) |
29 | 3, 28 | ax-mp 5 | 1 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2105 Vcvv 3440 ∪ cun 3894 {csn 4570 〈cop 4576 class class class wbr 5086 I cid 5505 “ cima 5610 ‘cfv 6465 t+ctcl 14772 hereditary whe 41619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-frege1 41637 ax-frege2 41638 ax-frege8 41656 ax-frege28 41677 ax-frege31 41681 ax-frege41 41692 ax-frege52a 41704 ax-frege52c 41735 ax-frege58b 41748 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-n0 12313 df-z 12399 df-uz 12662 df-seq 13801 df-trcl 14774 df-relexp 14807 df-he 41620 |
This theorem is referenced by: frege124 41834 |
Copyright terms: Public domain | W3C validator |