Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege110 Structured version   Visualization version   GIF version

Theorem frege110 44006
Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege110.x 𝑋𝐴
frege110.y 𝑌𝐵
frege110.m 𝑀𝐶
frege110.r 𝑅𝐷
Assertion
Ref Expression
frege110 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑀(𝑎)

Proof of Theorem frege110
StepHypRef Expression
1 frege110.x . . 3 𝑋𝐴
2 frege110.r . . 3 𝑅𝐷
31, 2frege109 44005 . 2 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋})
4 frege110.y . . . 4 𝑌𝐵
5 frege110.m . . . 4 𝑀𝐶
6 imaundir 6092 . . . . 5 (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋}))
7 fvex 6830 . . . . . . 7 (t+‘𝑅) ∈ V
8 imaexg 7838 . . . . . . 7 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V)
97, 8ax-mp 5 . . . . . 6 ((t+‘𝑅) “ {𝑋}) ∈ V
10 imai 6018 . . . . . . 7 ( I “ {𝑋}) = {𝑋}
11 snex 5369 . . . . . . 7 {𝑋} ∈ V
1210, 11eqeltri 2827 . . . . . 6 ( I “ {𝑋}) ∈ V
139, 12unex 7672 . . . . 5 (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V
146, 13eqeltri 2827 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V
154, 5, 2, 14frege78 43974 . . 3 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}))))
161elexi 3459 . . . . . . 7 𝑋 ∈ V
17 vex 3440 . . . . . . 7 𝑎 ∈ V
1816, 17elimasn 6034 . . . . . 6 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
19 df-br 5087 . . . . . 6 (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
2018, 19bitr4i 278 . . . . 5 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎)
2120imbi2i 336 . . . 4 ((𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
2221albii 1820 . . 3 (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
235elexi 3459 . . . . . 6 𝑀 ∈ V
2416, 23elimasn 6034 . . . . 5 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
25 df-br 5087 . . . . 5 (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
2624, 25bitr4i 278 . . . 4 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀)
2726imbi2i 336 . . 3 ((𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
2815, 22, 273imtr3g 295 . 2 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))
293, 28ax-mp 5 1 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2111  Vcvv 3436  cun 3895  {csn 4571  cop 4577   class class class wbr 5086   I cid 5505  cima 5614  cfv 6476  t+ctcl 14887   hereditary whe 43805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-frege1 43823  ax-frege2 43824  ax-frege8 43842  ax-frege28 43863  ax-frege31 43867  ax-frege41 43878  ax-frege52a 43890  ax-frege52c 43921  ax-frege58b 43934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-seq 13904  df-trcl 14889  df-relexp 14922  df-he 43806
This theorem is referenced by:  frege124  44020
  Copyright terms: Public domain W3C validator