| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege110 | Structured version Visualization version GIF version | ||
| Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege110.x | ⊢ 𝑋 ∈ 𝐴 |
| frege110.y | ⊢ 𝑌 ∈ 𝐵 |
| frege110.m | ⊢ 𝑀 ∈ 𝐶 |
| frege110.r | ⊢ 𝑅 ∈ 𝐷 |
| Ref | Expression |
|---|---|
| frege110 | ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege110.x | . . 3 ⊢ 𝑋 ∈ 𝐴 | |
| 2 | frege110.r | . . 3 ⊢ 𝑅 ∈ 𝐷 | |
| 3 | 1, 2 | frege109 43965 | . 2 ⊢ 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) |
| 4 | frege110.y | . . . 4 ⊢ 𝑌 ∈ 𝐵 | |
| 5 | frege110.m | . . . 4 ⊢ 𝑀 ∈ 𝐶 | |
| 6 | imaundir 6103 | . . . . 5 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) | |
| 7 | fvex 6839 | . . . . . . 7 ⊢ (t+‘𝑅) ∈ V | |
| 8 | imaexg 7853 | . . . . . . 7 ⊢ ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ ((t+‘𝑅) “ {𝑋}) ∈ V |
| 10 | imai 6029 | . . . . . . 7 ⊢ ( I “ {𝑋}) = {𝑋} | |
| 11 | snex 5378 | . . . . . . 7 ⊢ {𝑋} ∈ V | |
| 12 | 10, 11 | eqeltri 2824 | . . . . . 6 ⊢ ( I “ {𝑋}) ∈ V |
| 13 | 9, 12 | unex 7684 | . . . . 5 ⊢ (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V |
| 14 | 6, 13 | eqeltri 2824 | . . . 4 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V |
| 15 | 4, 5, 2, 14 | frege78 43934 | . . 3 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})))) |
| 16 | 1 | elexi 3461 | . . . . . . 7 ⊢ 𝑋 ∈ V |
| 17 | vex 3442 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 18 | 16, 17 | elimasn 6045 | . . . . . 6 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 〈𝑋, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) |
| 19 | df-br 5096 | . . . . . 6 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ 〈𝑋, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) | |
| 20 | 18, 19 | bitr4i 278 | . . . . 5 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎) |
| 21 | 20 | imbi2i 336 | . . . 4 ⊢ ((𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
| 22 | 21 | albii 1819 | . . 3 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
| 23 | 5 | elexi 3461 | . . . . . 6 ⊢ 𝑀 ∈ V |
| 24 | 16, 23 | elimasn 6045 | . . . . 5 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 〈𝑋, 𝑀〉 ∈ ((t+‘𝑅) ∪ I )) |
| 25 | df-br 5096 | . . . . 5 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ 〈𝑋, 𝑀〉 ∈ ((t+‘𝑅) ∪ I )) | |
| 26 | 24, 25 | bitr4i 278 | . . . 4 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀) |
| 27 | 26 | imbi2i 336 | . . 3 ⊢ ((𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| 28 | 15, 22, 27 | 3imtr3g 295 | . 2 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))) |
| 29 | 3, 28 | ax-mp 5 | 1 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 {csn 4579 〈cop 4585 class class class wbr 5095 I cid 5517 “ cima 5626 ‘cfv 6486 t+ctcl 14911 hereditary whe 43765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-frege1 43783 ax-frege2 43784 ax-frege8 43802 ax-frege28 43823 ax-frege31 43827 ax-frege41 43838 ax-frege52a 43850 ax-frege52c 43881 ax-frege58b 43894 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-n0 12404 df-z 12491 df-uz 12755 df-seq 13928 df-trcl 14913 df-relexp 14946 df-he 43766 |
| This theorem is referenced by: frege124 43980 |
| Copyright terms: Public domain | W3C validator |