Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege110 Structured version   Visualization version   GIF version

Theorem frege110 43997
Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege110.x 𝑋𝐴
frege110.y 𝑌𝐵
frege110.m 𝑀𝐶
frege110.r 𝑅𝐷
Assertion
Ref Expression
frege110 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑀(𝑎)

Proof of Theorem frege110
StepHypRef Expression
1 frege110.x . . 3 𝑋𝐴
2 frege110.r . . 3 𝑅𝐷
31, 2frege109 43996 . 2 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋})
4 frege110.y . . . 4 𝑌𝐵
5 frege110.m . . . 4 𝑀𝐶
6 imaundir 6139 . . . . 5 (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋}))
7 fvex 6889 . . . . . . 7 (t+‘𝑅) ∈ V
8 imaexg 7909 . . . . . . 7 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V)
97, 8ax-mp 5 . . . . . 6 ((t+‘𝑅) “ {𝑋}) ∈ V
10 imai 6061 . . . . . . 7 ( I “ {𝑋}) = {𝑋}
11 snex 5406 . . . . . . 7 {𝑋} ∈ V
1210, 11eqeltri 2830 . . . . . 6 ( I “ {𝑋}) ∈ V
139, 12unex 7738 . . . . 5 (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V
146, 13eqeltri 2830 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V
154, 5, 2, 14frege78 43965 . . 3 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}))))
161elexi 3482 . . . . . . 7 𝑋 ∈ V
17 vex 3463 . . . . . . 7 𝑎 ∈ V
1816, 17elimasn 6077 . . . . . 6 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
19 df-br 5120 . . . . . 6 (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
2018, 19bitr4i 278 . . . . 5 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎)
2120imbi2i 336 . . . 4 ((𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
2221albii 1819 . . 3 (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
235elexi 3482 . . . . . 6 𝑀 ∈ V
2416, 23elimasn 6077 . . . . 5 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
25 df-br 5120 . . . . 5 (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
2624, 25bitr4i 278 . . . 4 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀)
2726imbi2i 336 . . 3 ((𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
2815, 22, 273imtr3g 295 . 2 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))
293, 28ax-mp 5 1 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2108  Vcvv 3459  cun 3924  {csn 4601  cop 4607   class class class wbr 5119   I cid 5547  cima 5657  cfv 6531  t+ctcl 15004   hereditary whe 43796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-frege1 43814  ax-frege2 43815  ax-frege8 43833  ax-frege28 43854  ax-frege31 43858  ax-frege41 43869  ax-frege52a 43881  ax-frege52c 43912  ax-frege58b 43925
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-trcl 15006  df-relexp 15039  df-he 43797
This theorem is referenced by:  frege124  44011
  Copyright terms: Public domain W3C validator