Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege110 Structured version   Visualization version   GIF version

Theorem frege110 42709
Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege110.x 𝑋𝐴
frege110.y 𝑌𝐵
frege110.m 𝑀𝐶
frege110.r 𝑅𝐷
Assertion
Ref Expression
frege110 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑀(𝑎)

Proof of Theorem frege110
StepHypRef Expression
1 frege110.x . . 3 𝑋𝐴
2 frege110.r . . 3 𝑅𝐷
31, 2frege109 42708 . 2 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋})
4 frege110.y . . . 4 𝑌𝐵
5 frege110.m . . . 4 𝑀𝐶
6 imaundir 6147 . . . . 5 (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋}))
7 fvex 6901 . . . . . . 7 (t+‘𝑅) ∈ V
8 imaexg 7902 . . . . . . 7 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V)
97, 8ax-mp 5 . . . . . 6 ((t+‘𝑅) “ {𝑋}) ∈ V
10 imai 6070 . . . . . . 7 ( I “ {𝑋}) = {𝑋}
11 snex 5430 . . . . . . 7 {𝑋} ∈ V
1210, 11eqeltri 2829 . . . . . 6 ( I “ {𝑋}) ∈ V
139, 12unex 7729 . . . . 5 (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V
146, 13eqeltri 2829 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V
154, 5, 2, 14frege78 42677 . . 3 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}))))
161elexi 3493 . . . . . . 7 𝑋 ∈ V
17 vex 3478 . . . . . . 7 𝑎 ∈ V
1816, 17elimasn 6085 . . . . . 6 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
19 df-br 5148 . . . . . 6 (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
2018, 19bitr4i 277 . . . . 5 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎)
2120imbi2i 335 . . . 4 ((𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
2221albii 1821 . . 3 (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
235elexi 3493 . . . . . 6 𝑀 ∈ V
2416, 23elimasn 6085 . . . . 5 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
25 df-br 5148 . . . . 5 (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
2624, 25bitr4i 277 . . . 4 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀)
2726imbi2i 335 . . 3 ((𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
2815, 22, 273imtr3g 294 . 2 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))
293, 28ax-mp 5 1 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2106  Vcvv 3474  cun 3945  {csn 4627  cop 4633   class class class wbr 5147   I cid 5572  cima 5678  cfv 6540  t+ctcl 14928   hereditary whe 42508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-frege1 42526  ax-frege2 42527  ax-frege8 42545  ax-frege28 42566  ax-frege31 42570  ax-frege41 42581  ax-frege52a 42593  ax-frege52c 42624  ax-frege58b 42637
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-seq 13963  df-trcl 14930  df-relexp 14963  df-he 42509
This theorem is referenced by:  frege124  42723
  Copyright terms: Public domain W3C validator