| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege110 | Structured version Visualization version GIF version | ||
| Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege110.x | ⊢ 𝑋 ∈ 𝐴 |
| frege110.y | ⊢ 𝑌 ∈ 𝐵 |
| frege110.m | ⊢ 𝑀 ∈ 𝐶 |
| frege110.r | ⊢ 𝑅 ∈ 𝐷 |
| Ref | Expression |
|---|---|
| frege110 | ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege110.x | . . 3 ⊢ 𝑋 ∈ 𝐴 | |
| 2 | frege110.r | . . 3 ⊢ 𝑅 ∈ 𝐷 | |
| 3 | 1, 2 | frege109 44005 | . 2 ⊢ 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) |
| 4 | frege110.y | . . . 4 ⊢ 𝑌 ∈ 𝐵 | |
| 5 | frege110.m | . . . 4 ⊢ 𝑀 ∈ 𝐶 | |
| 6 | imaundir 6092 | . . . . 5 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) | |
| 7 | fvex 6830 | . . . . . . 7 ⊢ (t+‘𝑅) ∈ V | |
| 8 | imaexg 7838 | . . . . . . 7 ⊢ ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ ((t+‘𝑅) “ {𝑋}) ∈ V |
| 10 | imai 6018 | . . . . . . 7 ⊢ ( I “ {𝑋}) = {𝑋} | |
| 11 | snex 5369 | . . . . . . 7 ⊢ {𝑋} ∈ V | |
| 12 | 10, 11 | eqeltri 2827 | . . . . . 6 ⊢ ( I “ {𝑋}) ∈ V |
| 13 | 9, 12 | unex 7672 | . . . . 5 ⊢ (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V |
| 14 | 6, 13 | eqeltri 2827 | . . . 4 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V |
| 15 | 4, 5, 2, 14 | frege78 43974 | . . 3 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})))) |
| 16 | 1 | elexi 3459 | . . . . . . 7 ⊢ 𝑋 ∈ V |
| 17 | vex 3440 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 18 | 16, 17 | elimasn 6034 | . . . . . 6 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 〈𝑋, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) |
| 19 | df-br 5087 | . . . . . 6 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ 〈𝑋, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) | |
| 20 | 18, 19 | bitr4i 278 | . . . . 5 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎) |
| 21 | 20 | imbi2i 336 | . . . 4 ⊢ ((𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
| 22 | 21 | albii 1820 | . . 3 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
| 23 | 5 | elexi 3459 | . . . . . 6 ⊢ 𝑀 ∈ V |
| 24 | 16, 23 | elimasn 6034 | . . . . 5 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 〈𝑋, 𝑀〉 ∈ ((t+‘𝑅) ∪ I )) |
| 25 | df-br 5087 | . . . . 5 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ 〈𝑋, 𝑀〉 ∈ ((t+‘𝑅) ∪ I )) | |
| 26 | 24, 25 | bitr4i 278 | . . . 4 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀) |
| 27 | 26 | imbi2i 336 | . . 3 ⊢ ((𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| 28 | 15, 22, 27 | 3imtr3g 295 | . 2 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))) |
| 29 | 3, 28 | ax-mp 5 | 1 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 {csn 4571 〈cop 4577 class class class wbr 5086 I cid 5505 “ cima 5614 ‘cfv 6476 t+ctcl 14887 hereditary whe 43805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-frege1 43823 ax-frege2 43824 ax-frege8 43842 ax-frege28 43863 ax-frege31 43867 ax-frege41 43878 ax-frege52a 43890 ax-frege52c 43921 ax-frege58b 43934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-trcl 14889 df-relexp 14922 df-he 43806 |
| This theorem is referenced by: frege124 44020 |
| Copyright terms: Public domain | W3C validator |