| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege110 | Structured version Visualization version GIF version | ||
| Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege110.x | ⊢ 𝑋 ∈ 𝐴 |
| frege110.y | ⊢ 𝑌 ∈ 𝐵 |
| frege110.m | ⊢ 𝑀 ∈ 𝐶 |
| frege110.r | ⊢ 𝑅 ∈ 𝐷 |
| Ref | Expression |
|---|---|
| frege110 | ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege110.x | . . 3 ⊢ 𝑋 ∈ 𝐴 | |
| 2 | frege110.r | . . 3 ⊢ 𝑅 ∈ 𝐷 | |
| 3 | 1, 2 | frege109 43996 | . 2 ⊢ 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) |
| 4 | frege110.y | . . . 4 ⊢ 𝑌 ∈ 𝐵 | |
| 5 | frege110.m | . . . 4 ⊢ 𝑀 ∈ 𝐶 | |
| 6 | imaundir 6139 | . . . . 5 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) | |
| 7 | fvex 6889 | . . . . . . 7 ⊢ (t+‘𝑅) ∈ V | |
| 8 | imaexg 7909 | . . . . . . 7 ⊢ ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ ((t+‘𝑅) “ {𝑋}) ∈ V |
| 10 | imai 6061 | . . . . . . 7 ⊢ ( I “ {𝑋}) = {𝑋} | |
| 11 | snex 5406 | . . . . . . 7 ⊢ {𝑋} ∈ V | |
| 12 | 10, 11 | eqeltri 2830 | . . . . . 6 ⊢ ( I “ {𝑋}) ∈ V |
| 13 | 9, 12 | unex 7738 | . . . . 5 ⊢ (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V |
| 14 | 6, 13 | eqeltri 2830 | . . . 4 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V |
| 15 | 4, 5, 2, 14 | frege78 43965 | . . 3 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})))) |
| 16 | 1 | elexi 3482 | . . . . . . 7 ⊢ 𝑋 ∈ V |
| 17 | vex 3463 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 18 | 16, 17 | elimasn 6077 | . . . . . 6 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 〈𝑋, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) |
| 19 | df-br 5120 | . . . . . 6 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ 〈𝑋, 𝑎〉 ∈ ((t+‘𝑅) ∪ I )) | |
| 20 | 18, 19 | bitr4i 278 | . . . . 5 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎) |
| 21 | 20 | imbi2i 336 | . . . 4 ⊢ ((𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
| 22 | 21 | albii 1819 | . . 3 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
| 23 | 5 | elexi 3482 | . . . . . 6 ⊢ 𝑀 ∈ V |
| 24 | 16, 23 | elimasn 6077 | . . . . 5 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 〈𝑋, 𝑀〉 ∈ ((t+‘𝑅) ∪ I )) |
| 25 | df-br 5120 | . . . . 5 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ 〈𝑋, 𝑀〉 ∈ ((t+‘𝑅) ∪ I )) | |
| 26 | 24, 25 | bitr4i 278 | . . . 4 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀) |
| 27 | 26 | imbi2i 336 | . . 3 ⊢ ((𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| 28 | 15, 22, 27 | 3imtr3g 295 | . 2 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))) |
| 29 | 3, 28 | ax-mp 5 | 1 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 {csn 4601 〈cop 4607 class class class wbr 5119 I cid 5547 “ cima 5657 ‘cfv 6531 t+ctcl 15004 hereditary whe 43796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-frege1 43814 ax-frege2 43815 ax-frege8 43833 ax-frege28 43854 ax-frege31 43858 ax-frege41 43869 ax-frege52a 43881 ax-frege52c 43912 ax-frege58b 43925 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-trcl 15006 df-relexp 15039 df-he 43797 |
| This theorem is referenced by: frege124 44011 |
| Copyright terms: Public domain | W3C validator |