![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege110 | Structured version Visualization version GIF version |
Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege110.x | ⊢ 𝑋 ∈ 𝐴 |
frege110.y | ⊢ 𝑌 ∈ 𝐵 |
frege110.m | ⊢ 𝑀 ∈ 𝐶 |
frege110.r | ⊢ 𝑅 ∈ 𝐷 |
Ref | Expression |
---|---|
frege110 | ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege110.x | . . 3 ⊢ 𝑋 ∈ 𝐴 | |
2 | frege110.r | . . 3 ⊢ 𝑅 ∈ 𝐷 | |
3 | 1, 2 | frege109 42708 | . 2 ⊢ 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) |
4 | frege110.y | . . . 4 ⊢ 𝑌 ∈ 𝐵 | |
5 | frege110.m | . . . 4 ⊢ 𝑀 ∈ 𝐶 | |
6 | imaundir 6147 | . . . . 5 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) | |
7 | fvex 6901 | . . . . . . 7 ⊢ (t+‘𝑅) ∈ V | |
8 | imaexg 7902 | . . . . . . 7 ⊢ ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ ((t+‘𝑅) “ {𝑋}) ∈ V |
10 | imai 6070 | . . . . . . 7 ⊢ ( I “ {𝑋}) = {𝑋} | |
11 | snex 5430 | . . . . . . 7 ⊢ {𝑋} ∈ V | |
12 | 10, 11 | eqeltri 2829 | . . . . . 6 ⊢ ( I “ {𝑋}) ∈ V |
13 | 9, 12 | unex 7729 | . . . . 5 ⊢ (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V |
14 | 6, 13 | eqeltri 2829 | . . . 4 ⊢ (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V |
15 | 4, 5, 2, 14 | frege78 42677 | . . 3 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})))) |
16 | 1 | elexi 3493 | . . . . . . 7 ⊢ 𝑋 ∈ V |
17 | vex 3478 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
18 | 16, 17 | elimasn 6085 | . . . . . 6 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I )) |
19 | df-br 5148 | . . . . . 6 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I )) | |
20 | 18, 19 | bitr4i 277 | . . . . 5 ⊢ (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎) |
21 | 20 | imbi2i 335 | . . . 4 ⊢ ((𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
22 | 21 | albii 1821 | . . 3 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎)) |
23 | 5 | elexi 3493 | . . . . . 6 ⊢ 𝑀 ∈ V |
24 | 16, 23 | elimasn 6085 | . . . . 5 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I )) |
25 | df-br 5148 | . . . . 5 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I )) | |
26 | 24, 25 | bitr4i 277 | . . . 4 ⊢ (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀) |
27 | 26 | imbi2i 335 | . . 3 ⊢ ((𝑌(t+‘𝑅)𝑀 → 𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
28 | 15, 22, 27 | 3imtr3g 294 | . 2 ⊢ (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))) |
29 | 3, 28 | ax-mp 5 | 1 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2106 Vcvv 3474 ∪ cun 3945 {csn 4627 ⟨cop 4633 class class class wbr 5147 I cid 5572 “ cima 5678 ‘cfv 6540 t+ctcl 14928 hereditary whe 42508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-frege1 42526 ax-frege2 42527 ax-frege8 42545 ax-frege28 42566 ax-frege31 42570 ax-frege41 42581 ax-frege52a 42593 ax-frege52c 42624 ax-frege58b 42637 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-seq 13963 df-trcl 14930 df-relexp 14963 df-he 42509 |
This theorem is referenced by: frege124 42723 |
Copyright terms: Public domain | W3C validator |