Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege110 Structured version   Visualization version   GIF version

Theorem frege110 43966
Description: Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege110.x 𝑋𝐴
frege110.y 𝑌𝐵
frege110.m 𝑀𝐶
frege110.r 𝑅𝐷
Assertion
Ref Expression
frege110 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑀(𝑎)

Proof of Theorem frege110
StepHypRef Expression
1 frege110.x . . 3 𝑋𝐴
2 frege110.r . . 3 𝑅𝐷
31, 2frege109 43965 . 2 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋})
4 frege110.y . . . 4 𝑌𝐵
5 frege110.m . . . 4 𝑀𝐶
6 imaundir 6103 . . . . 5 (((t+‘𝑅) ∪ I ) “ {𝑋}) = (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋}))
7 fvex 6839 . . . . . . 7 (t+‘𝑅) ∈ V
8 imaexg 7853 . . . . . . 7 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V)
97, 8ax-mp 5 . . . . . 6 ((t+‘𝑅) “ {𝑋}) ∈ V
10 imai 6029 . . . . . . 7 ( I “ {𝑋}) = {𝑋}
11 snex 5378 . . . . . . 7 {𝑋} ∈ V
1210, 11eqeltri 2824 . . . . . 6 ( I “ {𝑋}) ∈ V
139, 12unex 7684 . . . . 5 (((t+‘𝑅) “ {𝑋}) ∪ ( I “ {𝑋})) ∈ V
146, 13eqeltri 2824 . . . 4 (((t+‘𝑅) ∪ I ) “ {𝑋}) ∈ V
154, 5, 2, 14frege78 43934 . . 3 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) → (𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}))))
161elexi 3461 . . . . . . 7 𝑋 ∈ V
17 vex 3442 . . . . . . 7 𝑎 ∈ V
1816, 17elimasn 6045 . . . . . 6 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
19 df-br 5096 . . . . . 6 (𝑋((t+‘𝑅) ∪ I )𝑎 ↔ ⟨𝑋, 𝑎⟩ ∈ ((t+‘𝑅) ∪ I ))
2018, 19bitr4i 278 . . . . 5 (𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑎)
2120imbi2i 336 . . . 4 ((𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
2221albii 1819 . . 3 (∀𝑎(𝑌𝑅𝑎𝑎 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ ∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎))
235elexi 3461 . . . . . 6 𝑀 ∈ V
2416, 23elimasn 6045 . . . . 5 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
25 df-br 5096 . . . . 5 (𝑋((t+‘𝑅) ∪ I )𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ ((t+‘𝑅) ∪ I ))
2624, 25bitr4i 278 . . . 4 (𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋}) ↔ 𝑋((t+‘𝑅) ∪ I )𝑀)
2726imbi2i 336 . . 3 ((𝑌(t+‘𝑅)𝑀𝑀 ∈ (((t+‘𝑅) ∪ I ) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
2815, 22, 273imtr3g 295 . 2 (𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) → (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))
293, 28ax-mp 5 1 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  Vcvv 3438  cun 3903  {csn 4579  cop 4585   class class class wbr 5095   I cid 5517  cima 5626  cfv 6486  t+ctcl 14911   hereditary whe 43765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-frege1 43783  ax-frege2 43784  ax-frege8 43802  ax-frege28 43823  ax-frege31 43827  ax-frege41 43838  ax-frege52a 43850  ax-frege52c 43881  ax-frege58b 43894
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-n0 12404  df-z 12491  df-uz 12755  df-seq 13928  df-trcl 14913  df-relexp 14946  df-he 43766
This theorem is referenced by:  frege124  43980
  Copyright terms: Public domain W3C validator