MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetcdmex Structured version   Visualization version   GIF version

Theorem fsetcdmex 8804
Description: The class of all functions from a nonempty set 𝐴 into a class 𝐵 is a set iff 𝐵 is a set . (Contributed by AV, 15-Sep-2024.)
Assertion
Ref Expression
fsetcdmex ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∈ V ↔ {𝑓𝑓:𝐴𝐵} ∈ V))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetcdmex
StepHypRef Expression
1 fsetex 8797 . 2 (𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∈ V)
2 fsetprcnex 8803 . . . . 5 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
32ex 414 . . . 4 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
4 df-nel 3047 . . . 4 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
5 df-nel 3047 . . . 4 ({𝑓𝑓:𝐴𝐵} ∉ V ↔ ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
63, 4, 53imtr3g 295 . . 3 ((𝐴𝑉𝐴 ≠ ∅) → (¬ 𝐵 ∈ V → ¬ {𝑓𝑓:𝐴𝐵} ∈ V))
76con4d 115 . 2 ((𝐴𝑉𝐴 ≠ ∅) → ({𝑓𝑓:𝐴𝐵} ∈ V → 𝐵 ∈ V))
81, 7impbid2 225 1 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∈ V ↔ {𝑓𝑓:𝐴𝐵} ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  {cab 2710  wne 2940  wnel 3046  Vcvv 3444  c0 4283  wf 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-map 8770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator