![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsetcdmex | Structured version Visualization version GIF version |
Description: The class of all functions from a nonempty set 𝐴 into a class 𝐵 is a set iff 𝐵 is a set . (Contributed by AV, 15-Sep-2024.) |
Ref | Expression |
---|---|
fsetcdmex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐵 ∈ V ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsetex 8797 | . 2 ⊢ (𝐵 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
2 | fsetprcnex 8803 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | |
3 | 2 | ex 414 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V)) |
4 | df-nel 3047 | . . . 4 ⊢ (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V) | |
5 | df-nel 3047 | . . . 4 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V ↔ ¬ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
6 | 3, 4, 5 | 3imtr3g 295 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (¬ 𝐵 ∈ V → ¬ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V)) |
7 | 6 | con4d 115 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V → 𝐵 ∈ V)) |
8 | 1, 7 | impbid2 225 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐵 ∈ V ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 {cab 2710 ≠ wne 2940 ∉ wnel 3046 Vcvv 3444 ∅c0 4283 ⟶wf 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-map 8770 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |