MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetcdmex Structured version   Visualization version   GIF version

Theorem fsetcdmex 8813
Description: The class of all functions from a nonempty set 𝐴 into a class 𝐵 is a set iff 𝐵 is a set . (Contributed by AV, 15-Sep-2024.)
Assertion
Ref Expression
fsetcdmex ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∈ V ↔ {𝑓𝑓:𝐴𝐵} ∈ V))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetcdmex
StepHypRef Expression
1 fsetex 8806 . 2 (𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∈ V)
2 fsetprcnex 8812 . . . . 5 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
32ex 412 . . . 4 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
4 df-nel 3030 . . . 4 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
5 df-nel 3030 . . . 4 ({𝑓𝑓:𝐴𝐵} ∉ V ↔ ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
63, 4, 53imtr3g 295 . . 3 ((𝐴𝑉𝐴 ≠ ∅) → (¬ 𝐵 ∈ V → ¬ {𝑓𝑓:𝐴𝐵} ∈ V))
76con4d 115 . 2 ((𝐴𝑉𝐴 ≠ ∅) → ({𝑓𝑓:𝐴𝐵} ∈ V → 𝐵 ∈ V))
81, 7impbid2 226 1 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∈ V ↔ {𝑓𝑓:𝐴𝐵} ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  {cab 2707  wne 2925  wnel 3029  Vcvv 3444  c0 4292  wf 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator