MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2 Structured version   Visualization version   GIF version

Theorem funcres2 17893
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcres2 (𝑅 ∈ (Subcatβ€˜π·) β†’ (𝐢 Func (𝐷 β†Ύcat 𝑅)) βŠ† (𝐢 Func 𝐷))

Proof of Theorem funcres2
Dummy variables 𝑓 𝑔 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17857 . . 3 Rel (𝐢 Func (𝐷 β†Ύcat 𝑅))
21a1i 11 . 2 (𝑅 ∈ (Subcatβ€˜π·) β†’ Rel (𝐢 Func (𝐷 β†Ύcat 𝑅)))
3 simpr 483 . . . . 5 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔)
4 eqid 2728 . . . . . 6 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
5 eqid 2728 . . . . . 6 (Hom β€˜πΆ) = (Hom β€˜πΆ)
6 simpl 481 . . . . . 6 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑅 ∈ (Subcatβ€˜π·))
7 eqidd 2729 . . . . . . 7 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ dom dom 𝑅 = dom dom 𝑅)
86, 7subcfn 17836 . . . . . 6 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑅 Fn (dom dom 𝑅 Γ— dom dom 𝑅))
9 eqid 2728 . . . . . . . 8 (Baseβ€˜(𝐷 β†Ύcat 𝑅)) = (Baseβ€˜(𝐷 β†Ύcat 𝑅))
104, 9, 3funcf1 17861 . . . . . . 7 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑓:(Baseβ€˜πΆ)⟢(Baseβ€˜(𝐷 β†Ύcat 𝑅)))
11 eqid 2728 . . . . . . . . 9 (𝐷 β†Ύcat 𝑅) = (𝐷 β†Ύcat 𝑅)
12 eqid 2728 . . . . . . . . 9 (Baseβ€˜π·) = (Baseβ€˜π·)
13 subcrcl 17808 . . . . . . . . . 10 (𝑅 ∈ (Subcatβ€˜π·) β†’ 𝐷 ∈ Cat)
1413adantr 479 . . . . . . . . 9 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝐷 ∈ Cat)
156, 8, 12subcss1 17837 . . . . . . . . 9 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ dom dom 𝑅 βŠ† (Baseβ€˜π·))
1611, 12, 14, 8, 15rescbas 17821 . . . . . . . 8 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ dom dom 𝑅 = (Baseβ€˜(𝐷 β†Ύcat 𝑅)))
1716feq3d 6714 . . . . . . 7 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ (𝑓:(Baseβ€˜πΆ)⟢dom dom 𝑅 ↔ 𝑓:(Baseβ€˜πΆ)⟢(Baseβ€˜(𝐷 β†Ύcat 𝑅))))
1810, 17mpbird 256 . . . . . 6 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑓:(Baseβ€˜πΆ)⟢dom dom 𝑅)
19 eqid 2728 . . . . . . . 8 (Hom β€˜(𝐷 β†Ύcat 𝑅)) = (Hom β€˜(𝐷 β†Ύcat 𝑅))
20 simplr 767 . . . . . . . 8 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔)
21 simprl 769 . . . . . . . 8 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ π‘₯ ∈ (Baseβ€˜πΆ))
22 simprr 771 . . . . . . . 8 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝑦 ∈ (Baseβ€˜πΆ))
234, 5, 19, 20, 21, 22funcf2 17863 . . . . . . 7 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (π‘₯𝑔𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((π‘“β€˜π‘₯)(Hom β€˜(𝐷 β†Ύcat 𝑅))(π‘“β€˜π‘¦)))
2411, 12, 14, 8, 15reschom 17823 . . . . . . . . . 10 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑅 = (Hom β€˜(𝐷 β†Ύcat 𝑅)))
2524adantr 479 . . . . . . . . 9 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝑅 = (Hom β€˜(𝐷 β†Ύcat 𝑅)))
2625oveqd 7443 . . . . . . . 8 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ ((π‘“β€˜π‘₯)𝑅(π‘“β€˜π‘¦)) = ((π‘“β€˜π‘₯)(Hom β€˜(𝐷 β†Ύcat 𝑅))(π‘“β€˜π‘¦)))
2726feq3d 6714 . . . . . . 7 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ ((π‘₯𝑔𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((π‘“β€˜π‘₯)𝑅(π‘“β€˜π‘¦)) ↔ (π‘₯𝑔𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((π‘“β€˜π‘₯)(Hom β€˜(𝐷 β†Ύcat 𝑅))(π‘“β€˜π‘¦))))
2823, 27mpbird 256 . . . . . 6 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (π‘₯𝑔𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((π‘“β€˜π‘₯)𝑅(π‘“β€˜π‘¦)))
294, 5, 6, 8, 18, 28funcres2b 17892 . . . . 5 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ (𝑓(𝐢 Func 𝐷)𝑔 ↔ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔))
303, 29mpbird 256 . . . 4 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑓(𝐢 Func 𝐷)𝑔)
3130ex 411 . . 3 (𝑅 ∈ (Subcatβ€˜π·) β†’ (𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔 β†’ 𝑓(𝐢 Func 𝐷)𝑔))
32 df-br 5153 . . 3 (𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔 ↔ βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func (𝐷 β†Ύcat 𝑅)))
33 df-br 5153 . . 3 (𝑓(𝐢 Func 𝐷)𝑔 ↔ βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func 𝐷))
3431, 32, 333imtr3g 294 . 2 (𝑅 ∈ (Subcatβ€˜π·) β†’ (βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func (𝐷 β†Ύcat 𝑅)) β†’ βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func 𝐷)))
352, 34relssdv 5794 1 (𝑅 ∈ (Subcatβ€˜π·) β†’ (𝐢 Func (𝐷 β†Ύcat 𝑅)) βŠ† (𝐢 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   βŠ† wss 3949  βŸ¨cop 4638   class class class wbr 5152  dom cdm 5682  Rel wrel 5687  βŸΆwf 6549  β€˜cfv 6553  (class class class)co 7426  Basecbs 17189  Hom chom 17253  Catccat 17653   β†Ύcat cresc 17800  Subcatcsubc 17801   Func cfunc 17849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-map 8855  df-pm 8856  df-ixp 8925  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-2 12315  df-3 12316  df-4 12317  df-5 12318  df-6 12319  df-7 12320  df-8 12321  df-9 12322  df-n0 12513  df-z 12599  df-dec 12718  df-sets 17142  df-slot 17160  df-ndx 17172  df-base 17190  df-ress 17219  df-hom 17266  df-cco 17267  df-cat 17657  df-cid 17658  df-homf 17659  df-ssc 17802  df-resc 17803  df-subc 17804  df-func 17853
This theorem is referenced by:  fthres2  17930  ressffth  17936  funcsetcres2  18091
  Copyright terms: Public domain W3C validator