MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2 Structured version   Visualization version   GIF version

Theorem funcres2 17857
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcres2 (𝑅 ∈ (Subcatβ€˜π·) β†’ (𝐢 Func (𝐷 β†Ύcat 𝑅)) βŠ† (𝐢 Func 𝐷))

Proof of Theorem funcres2
Dummy variables 𝑓 𝑔 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17821 . . 3 Rel (𝐢 Func (𝐷 β†Ύcat 𝑅))
21a1i 11 . 2 (𝑅 ∈ (Subcatβ€˜π·) β†’ Rel (𝐢 Func (𝐷 β†Ύcat 𝑅)))
3 simpr 484 . . . . 5 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔)
4 eqid 2726 . . . . . 6 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
5 eqid 2726 . . . . . 6 (Hom β€˜πΆ) = (Hom β€˜πΆ)
6 simpl 482 . . . . . 6 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑅 ∈ (Subcatβ€˜π·))
7 eqidd 2727 . . . . . . 7 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ dom dom 𝑅 = dom dom 𝑅)
86, 7subcfn 17800 . . . . . 6 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑅 Fn (dom dom 𝑅 Γ— dom dom 𝑅))
9 eqid 2726 . . . . . . . 8 (Baseβ€˜(𝐷 β†Ύcat 𝑅)) = (Baseβ€˜(𝐷 β†Ύcat 𝑅))
104, 9, 3funcf1 17825 . . . . . . 7 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑓:(Baseβ€˜πΆ)⟢(Baseβ€˜(𝐷 β†Ύcat 𝑅)))
11 eqid 2726 . . . . . . . . 9 (𝐷 β†Ύcat 𝑅) = (𝐷 β†Ύcat 𝑅)
12 eqid 2726 . . . . . . . . 9 (Baseβ€˜π·) = (Baseβ€˜π·)
13 subcrcl 17772 . . . . . . . . . 10 (𝑅 ∈ (Subcatβ€˜π·) β†’ 𝐷 ∈ Cat)
1413adantr 480 . . . . . . . . 9 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝐷 ∈ Cat)
156, 8, 12subcss1 17801 . . . . . . . . 9 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ dom dom 𝑅 βŠ† (Baseβ€˜π·))
1611, 12, 14, 8, 15rescbas 17785 . . . . . . . 8 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ dom dom 𝑅 = (Baseβ€˜(𝐷 β†Ύcat 𝑅)))
1716feq3d 6698 . . . . . . 7 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ (𝑓:(Baseβ€˜πΆ)⟢dom dom 𝑅 ↔ 𝑓:(Baseβ€˜πΆ)⟢(Baseβ€˜(𝐷 β†Ύcat 𝑅))))
1810, 17mpbird 257 . . . . . 6 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑓:(Baseβ€˜πΆ)⟢dom dom 𝑅)
19 eqid 2726 . . . . . . . 8 (Hom β€˜(𝐷 β†Ύcat 𝑅)) = (Hom β€˜(𝐷 β†Ύcat 𝑅))
20 simplr 766 . . . . . . . 8 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔)
21 simprl 768 . . . . . . . 8 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ π‘₯ ∈ (Baseβ€˜πΆ))
22 simprr 770 . . . . . . . 8 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝑦 ∈ (Baseβ€˜πΆ))
234, 5, 19, 20, 21, 22funcf2 17827 . . . . . . 7 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (π‘₯𝑔𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((π‘“β€˜π‘₯)(Hom β€˜(𝐷 β†Ύcat 𝑅))(π‘“β€˜π‘¦)))
2411, 12, 14, 8, 15reschom 17787 . . . . . . . . . 10 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑅 = (Hom β€˜(𝐷 β†Ύcat 𝑅)))
2524adantr 480 . . . . . . . . 9 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝑅 = (Hom β€˜(𝐷 β†Ύcat 𝑅)))
2625oveqd 7422 . . . . . . . 8 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ ((π‘“β€˜π‘₯)𝑅(π‘“β€˜π‘¦)) = ((π‘“β€˜π‘₯)(Hom β€˜(𝐷 β†Ύcat 𝑅))(π‘“β€˜π‘¦)))
2726feq3d 6698 . . . . . . 7 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ ((π‘₯𝑔𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((π‘“β€˜π‘₯)𝑅(π‘“β€˜π‘¦)) ↔ (π‘₯𝑔𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((π‘“β€˜π‘₯)(Hom β€˜(𝐷 β†Ύcat 𝑅))(π‘“β€˜π‘¦))))
2823, 27mpbird 257 . . . . . 6 (((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (π‘₯𝑔𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((π‘“β€˜π‘₯)𝑅(π‘“β€˜π‘¦)))
294, 5, 6, 8, 18, 28funcres2b 17856 . . . . 5 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ (𝑓(𝐢 Func 𝐷)𝑔 ↔ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔))
303, 29mpbird 257 . . . 4 ((𝑅 ∈ (Subcatβ€˜π·) ∧ 𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔) β†’ 𝑓(𝐢 Func 𝐷)𝑔)
3130ex 412 . . 3 (𝑅 ∈ (Subcatβ€˜π·) β†’ (𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔 β†’ 𝑓(𝐢 Func 𝐷)𝑔))
32 df-br 5142 . . 3 (𝑓(𝐢 Func (𝐷 β†Ύcat 𝑅))𝑔 ↔ βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func (𝐷 β†Ύcat 𝑅)))
33 df-br 5142 . . 3 (𝑓(𝐢 Func 𝐷)𝑔 ↔ βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func 𝐷))
3431, 32, 333imtr3g 295 . 2 (𝑅 ∈ (Subcatβ€˜π·) β†’ (βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func (𝐷 β†Ύcat 𝑅)) β†’ βŸ¨π‘“, π‘”βŸ© ∈ (𝐢 Func 𝐷)))
352, 34relssdv 5781 1 (𝑅 ∈ (Subcatβ€˜π·) β†’ (𝐢 Func (𝐷 β†Ύcat 𝑅)) βŠ† (𝐢 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   βŠ† wss 3943  βŸ¨cop 4629   class class class wbr 5141  dom cdm 5669  Rel wrel 5674  βŸΆwf 6533  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  Hom chom 17217  Catccat 17617   β†Ύcat cresc 17764  Subcatcsubc 17765   Func cfunc 17813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-hom 17230  df-cco 17231  df-cat 17621  df-cid 17622  df-homf 17623  df-ssc 17766  df-resc 17767  df-subc 17768  df-func 17817
This theorem is referenced by:  fthres2  17894  ressffth  17900  funcsetcres2  18055
  Copyright terms: Public domain W3C validator