MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2 Structured version   Visualization version   GIF version

Theorem funcres2 17807
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcres2 (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Func (𝐷cat 𝑅)) ⊆ (𝐶 Func 𝐷))

Proof of Theorem funcres2
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17771 . . 3 Rel (𝐶 Func (𝐷cat 𝑅))
21a1i 11 . 2 (𝑅 ∈ (Subcat‘𝐷) → Rel (𝐶 Func (𝐷cat 𝑅)))
3 simpr 484 . . . . 5 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔)
4 eqid 2733 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2733 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
6 simpl 482 . . . . . 6 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑅 ∈ (Subcat‘𝐷))
7 eqidd 2734 . . . . . . 7 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → dom dom 𝑅 = dom dom 𝑅)
86, 7subcfn 17750 . . . . . 6 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑅 Fn (dom dom 𝑅 × dom dom 𝑅))
9 eqid 2733 . . . . . . . 8 (Base‘(𝐷cat 𝑅)) = (Base‘(𝐷cat 𝑅))
104, 9, 3funcf1 17775 . . . . . . 7 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓:(Base‘𝐶)⟶(Base‘(𝐷cat 𝑅)))
11 eqid 2733 . . . . . . . . 9 (𝐷cat 𝑅) = (𝐷cat 𝑅)
12 eqid 2733 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
13 subcrcl 17725 . . . . . . . . . 10 (𝑅 ∈ (Subcat‘𝐷) → 𝐷 ∈ Cat)
1413adantr 480 . . . . . . . . 9 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝐷 ∈ Cat)
156, 8, 12subcss1 17751 . . . . . . . . 9 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → dom dom 𝑅 ⊆ (Base‘𝐷))
1611, 12, 14, 8, 15rescbas 17738 . . . . . . . 8 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → dom dom 𝑅 = (Base‘(𝐷cat 𝑅)))
1716feq3d 6641 . . . . . . 7 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → (𝑓:(Base‘𝐶)⟶dom dom 𝑅𝑓:(Base‘𝐶)⟶(Base‘(𝐷cat 𝑅))))
1810, 17mpbird 257 . . . . . 6 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓:(Base‘𝐶)⟶dom dom 𝑅)
19 eqid 2733 . . . . . . . 8 (Hom ‘(𝐷cat 𝑅)) = (Hom ‘(𝐷cat 𝑅))
20 simplr 768 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔)
21 simprl 770 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
22 simprr 772 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
234, 5, 19, 20, 21, 22funcf2 17777 . . . . . . 7 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘(𝐷cat 𝑅))(𝑓𝑦)))
2411, 12, 14, 8, 15reschom 17739 . . . . . . . . . 10 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑅 = (Hom ‘(𝐷cat 𝑅)))
2524adantr 480 . . . . . . . . 9 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑅 = (Hom ‘(𝐷cat 𝑅)))
2625oveqd 7369 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑓𝑥)𝑅(𝑓𝑦)) = ((𝑓𝑥)(Hom ‘(𝐷cat 𝑅))(𝑓𝑦)))
2726feq3d 6641 . . . . . . 7 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)𝑅(𝑓𝑦)) ↔ (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘(𝐷cat 𝑅))(𝑓𝑦))))
2823, 27mpbird 257 . . . . . 6 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)𝑅(𝑓𝑦)))
294, 5, 6, 8, 18, 28funcres2b 17806 . . . . 5 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func (𝐷cat 𝑅))𝑔))
303, 29mpbird 257 . . . 4 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓(𝐶 Func 𝐷)𝑔)
3130ex 412 . . 3 (𝑅 ∈ (Subcat‘𝐷) → (𝑓(𝐶 Func (𝐷cat 𝑅))𝑔𝑓(𝐶 Func 𝐷)𝑔))
32 df-br 5094 . . 3 (𝑓(𝐶 Func (𝐷cat 𝑅))𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func (𝐷cat 𝑅)))
33 df-br 5094 . . 3 (𝑓(𝐶 Func 𝐷)𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷))
3431, 32, 333imtr3g 295 . 2 (𝑅 ∈ (Subcat‘𝐷) → (⟨𝑓, 𝑔⟩ ∈ (𝐶 Func (𝐷cat 𝑅)) → ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷)))
352, 34relssdv 5732 1 (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Func (𝐷cat 𝑅)) ⊆ (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898  cop 4581   class class class wbr 5093  dom cdm 5619  Rel wrel 5624  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  Catccat 17572  cat cresc 17717  Subcatcsubc 17718   Func cfunc 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-homf 17578  df-ssc 17719  df-resc 17720  df-subc 17721  df-func 17767
This theorem is referenced by:  fthres2  17843  ressffth  17849  funcsetcres2  18002
  Copyright terms: Public domain W3C validator