MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2 Structured version   Visualization version   GIF version

Theorem funcres2 17609
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcres2 (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Func (𝐷cat 𝑅)) ⊆ (𝐶 Func 𝐷))

Proof of Theorem funcres2
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17573 . . 3 Rel (𝐶 Func (𝐷cat 𝑅))
21a1i 11 . 2 (𝑅 ∈ (Subcat‘𝐷) → Rel (𝐶 Func (𝐷cat 𝑅)))
3 simpr 485 . . . . 5 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔)
4 eqid 2740 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2740 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
6 simpl 483 . . . . . 6 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑅 ∈ (Subcat‘𝐷))
7 eqidd 2741 . . . . . . 7 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → dom dom 𝑅 = dom dom 𝑅)
86, 7subcfn 17552 . . . . . 6 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑅 Fn (dom dom 𝑅 × dom dom 𝑅))
9 eqid 2740 . . . . . . . 8 (Base‘(𝐷cat 𝑅)) = (Base‘(𝐷cat 𝑅))
104, 9, 3funcf1 17577 . . . . . . 7 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓:(Base‘𝐶)⟶(Base‘(𝐷cat 𝑅)))
11 eqid 2740 . . . . . . . . 9 (𝐷cat 𝑅) = (𝐷cat 𝑅)
12 eqid 2740 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
13 subcrcl 17524 . . . . . . . . . 10 (𝑅 ∈ (Subcat‘𝐷) → 𝐷 ∈ Cat)
1413adantr 481 . . . . . . . . 9 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝐷 ∈ Cat)
156, 8, 12subcss1 17553 . . . . . . . . 9 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → dom dom 𝑅 ⊆ (Base‘𝐷))
1611, 12, 14, 8, 15rescbas 17537 . . . . . . . 8 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → dom dom 𝑅 = (Base‘(𝐷cat 𝑅)))
1716feq3d 6584 . . . . . . 7 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → (𝑓:(Base‘𝐶)⟶dom dom 𝑅𝑓:(Base‘𝐶)⟶(Base‘(𝐷cat 𝑅))))
1810, 17mpbird 256 . . . . . 6 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓:(Base‘𝐶)⟶dom dom 𝑅)
19 eqid 2740 . . . . . . . 8 (Hom ‘(𝐷cat 𝑅)) = (Hom ‘(𝐷cat 𝑅))
20 simplr 766 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔)
21 simprl 768 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
22 simprr 770 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
234, 5, 19, 20, 21, 22funcf2 17579 . . . . . . 7 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘(𝐷cat 𝑅))(𝑓𝑦)))
2411, 12, 14, 8, 15reschom 17539 . . . . . . . . . 10 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑅 = (Hom ‘(𝐷cat 𝑅)))
2524adantr 481 . . . . . . . . 9 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑅 = (Hom ‘(𝐷cat 𝑅)))
2625oveqd 7286 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑓𝑥)𝑅(𝑓𝑦)) = ((𝑓𝑥)(Hom ‘(𝐷cat 𝑅))(𝑓𝑦)))
2726feq3d 6584 . . . . . . 7 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)𝑅(𝑓𝑦)) ↔ (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘(𝐷cat 𝑅))(𝑓𝑦))))
2823, 27mpbird 256 . . . . . 6 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)𝑅(𝑓𝑦)))
294, 5, 6, 8, 18, 28funcres2b 17608 . . . . 5 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func (𝐷cat 𝑅))𝑔))
303, 29mpbird 256 . . . 4 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓(𝐶 Func 𝐷)𝑔)
3130ex 413 . . 3 (𝑅 ∈ (Subcat‘𝐷) → (𝑓(𝐶 Func (𝐷cat 𝑅))𝑔𝑓(𝐶 Func 𝐷)𝑔))
32 df-br 5080 . . 3 (𝑓(𝐶 Func (𝐷cat 𝑅))𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func (𝐷cat 𝑅)))
33 df-br 5080 . . 3 (𝑓(𝐶 Func 𝐷)𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷))
3431, 32, 333imtr3g 295 . 2 (𝑅 ∈ (Subcat‘𝐷) → (⟨𝑓, 𝑔⟩ ∈ (𝐶 Func (𝐷cat 𝑅)) → ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷)))
352, 34relssdv 5696 1 (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Func (𝐷cat 𝑅)) ⊆ (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wss 3892  cop 4573   class class class wbr 5079  dom cdm 5589  Rel wrel 5594  wf 6427  cfv 6431  (class class class)co 7269  Basecbs 16908  Hom chom 16969  Catccat 17369  cat cresc 17516  Subcatcsubc 17517   Func cfunc 17565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-map 8598  df-pm 8599  df-ixp 8667  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-hom 16982  df-cco 16983  df-cat 17373  df-cid 17374  df-homf 17375  df-ssc 17518  df-resc 17519  df-subc 17520  df-func 17569
This theorem is referenced by:  fthres2  17644  ressffth  17650  funcsetcres2  17804
  Copyright terms: Public domain W3C validator