Step | Hyp | Ref
| Expression |
1 | | relfunc 17493 |
. . 3
⊢ Rel
(𝐶 Func (𝐷 ↾cat 𝑅)) |
2 | 1 | a1i 11 |
. 2
⊢ (𝑅 ∈ (Subcat‘𝐷) → Rel (𝐶 Func (𝐷 ↾cat 𝑅))) |
3 | | simpr 484 |
. . . . 5
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) |
4 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
5 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
6 | | simpl 482 |
. . . . . 6
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → 𝑅 ∈ (Subcat‘𝐷)) |
7 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → dom dom 𝑅 = dom dom 𝑅) |
8 | 6, 7 | subcfn 17472 |
. . . . . 6
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → 𝑅 Fn (dom dom 𝑅 × dom dom 𝑅)) |
9 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(𝐷
↾cat 𝑅)) =
(Base‘(𝐷
↾cat 𝑅)) |
10 | 4, 9, 3 | funcf1 17497 |
. . . . . . 7
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → 𝑓:(Base‘𝐶)⟶(Base‘(𝐷 ↾cat 𝑅))) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐷 ↾cat 𝑅) = (𝐷 ↾cat 𝑅) |
12 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐷) =
(Base‘𝐷) |
13 | | subcrcl 17445 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (Subcat‘𝐷) → 𝐷 ∈ Cat) |
14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → 𝐷 ∈ Cat) |
15 | 6, 8, 12 | subcss1 17473 |
. . . . . . . . 9
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → dom dom 𝑅 ⊆ (Base‘𝐷)) |
16 | 11, 12, 14, 8, 15 | rescbas 17458 |
. . . . . . . 8
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → dom dom 𝑅 = (Base‘(𝐷 ↾cat 𝑅))) |
17 | 16 | feq3d 6571 |
. . . . . . 7
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → (𝑓:(Base‘𝐶)⟶dom dom 𝑅 ↔ 𝑓:(Base‘𝐶)⟶(Base‘(𝐷 ↾cat 𝑅)))) |
18 | 10, 17 | mpbird 256 |
. . . . . 6
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → 𝑓:(Base‘𝐶)⟶dom dom 𝑅) |
19 | | eqid 2738 |
. . . . . . . 8
⊢ (Hom
‘(𝐷
↾cat 𝑅)) =
(Hom ‘(𝐷
↾cat 𝑅)) |
20 | | simplr 765 |
. . . . . . . 8
⊢ (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) |
21 | | simprl 767 |
. . . . . . . 8
⊢ (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
22 | | simprr 769 |
. . . . . . . 8
⊢ (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
23 | 4, 5, 19, 20, 21, 22 | funcf2 17499 |
. . . . . . 7
⊢ (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓‘𝑥)(Hom ‘(𝐷 ↾cat 𝑅))(𝑓‘𝑦))) |
24 | 11, 12, 14, 8, 15 | reschom 17460 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → 𝑅 = (Hom ‘(𝐷 ↾cat 𝑅))) |
25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑅 = (Hom ‘(𝐷 ↾cat 𝑅))) |
26 | 25 | oveqd 7272 |
. . . . . . . 8
⊢ (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑓‘𝑥)𝑅(𝑓‘𝑦)) = ((𝑓‘𝑥)(Hom ‘(𝐷 ↾cat 𝑅))(𝑓‘𝑦))) |
27 | 26 | feq3d 6571 |
. . . . . . 7
⊢ (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓‘𝑥)𝑅(𝑓‘𝑦)) ↔ (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓‘𝑥)(Hom ‘(𝐷 ↾cat 𝑅))(𝑓‘𝑦)))) |
28 | 23, 27 | mpbird 256 |
. . . . . 6
⊢ (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓‘𝑥)𝑅(𝑓‘𝑦))) |
29 | 4, 5, 6, 8, 18, 28 | funcres2b 17528 |
. . . . 5
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → (𝑓(𝐶 Func 𝐷)𝑔 ↔ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔)) |
30 | 3, 29 | mpbird 256 |
. . . 4
⊢ ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔) → 𝑓(𝐶 Func 𝐷)𝑔) |
31 | 30 | ex 412 |
. . 3
⊢ (𝑅 ∈ (Subcat‘𝐷) → (𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔 → 𝑓(𝐶 Func 𝐷)𝑔)) |
32 | | df-br 5071 |
. . 3
⊢ (𝑓(𝐶 Func (𝐷 ↾cat 𝑅))𝑔 ↔ 〈𝑓, 𝑔〉 ∈ (𝐶 Func (𝐷 ↾cat 𝑅))) |
33 | | df-br 5071 |
. . 3
⊢ (𝑓(𝐶 Func 𝐷)𝑔 ↔ 〈𝑓, 𝑔〉 ∈ (𝐶 Func 𝐷)) |
34 | 31, 32, 33 | 3imtr3g 294 |
. 2
⊢ (𝑅 ∈ (Subcat‘𝐷) → (〈𝑓, 𝑔〉 ∈ (𝐶 Func (𝐷 ↾cat 𝑅)) → 〈𝑓, 𝑔〉 ∈ (𝐶 Func 𝐷))) |
35 | 2, 34 | relssdv 5687 |
1
⊢ (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Func (𝐷 ↾cat 𝑅)) ⊆ (𝐶 Func 𝐷)) |